
sub title

The Title

Title:
Subtitle
March 2007

Copyright c© 2006-2007 BSD Certification Group, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this permission
notice appear in all copies.

THE DOCUMENTATION IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS
ALL WARRANTIES WITH REGARD TO THIS DOCUMENTATION INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEG-
LIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

NetBSD and pkgsrc are registered trademarks of the NetBSD Foundation, Inc.
FreeBSD is a registered trademark of the FreeBSD Foundation.

Contents

Introduction vii

1 Installing and Upgrading the OS and Software 1
1.1 Recognize the installation program used by each operating system 2
1.2 Recognize which commands are available for upgrading the operating system 6
1.3 Understand the difference between a pre-compiled binary and compiling

from source . 8
1.4 Understand when it is preferable to install a pre-compiled binary and how to

do so . 9
1.5 Recognize the available methods for compiling a customized binary 10
1.6 Determine what software is installed on a system 10
1.7 Determine which software requires upgrading 11
1.8 Upgrade installed software . 12
1.9 Determine which software have outstanding security advisories 12
1.10 Follow the instructions in a security advisory to apply a security patch 13

2 Securing the Operating System 19
2.1 Determine the system’s security level . 20
2.2 Recognize basic recommended access methods 20
2.3 Configure an SSH server according to a set of requirements 25
2.4 Configure an SSH server to use a key pair for authentication 27
2.5 Preserve existing SSH host keys during a system upgrade 29
2.6 Recognize alternate authentication mechanisms 31
2.7 Recognize alternate authorization schemes 31
2.8 Recognize BSD firewalls and rulesets . 32
2.9 Recognize the BSD utilities that shape traffic or control bandwidth 33
2.10 Recognize BSD mechanisms for encrypting devices 34
2.11 Recognize methods for verifying the validity of binaries 34
2.12 Recognize the BSD methods for restraining a service 35
2.13 Modify the system banner . 35

3 Files, Filesystems and Disks 37
3.1 Mount or unmount local filesystems . 37
3.2 Configure data to be available through NFS 39
3.3 Determine which filesystems are currently mounted and which will be

mounted at system boot . 39

iii

Contents

3.4 Determine disk capacity and which files are consuming the most disk space . 41
3.5 Create and view symbolic or hard links . 44
3.6 View ACLs . 44
3.7 View file permissions and modify them using either symbolic or octal mode . 56
3.8 Modify a file’s owner or group . 57
3.9 Backup and restore a specified set of files and directories to local disk or tape 58
3.10 Backup and restore a file system . 59
3.11 Determine the directory structure of a system 62
3.12 Manually run the file system checker and repair tool 63
3.13 View and modify file flags . 64
3.14 Monitor the virtual memory system . 65

4 Users and Accounts Management 69
4.1 Protect authentication data . 69
4.2 Create, modify and remove user accounts 71
4.3 Create a system account . 71
4.4 Control which files are copied to a new user’s home directory during account

creation . 73
4.5 Change a password . 74
4.6 Change the encryption algorithm used to encrypt the password database . . . 76
4.7 Change a user’s default shell . 77
4.8 Lock a user account or reset a locked user account 78
4.9 Determine identity and group membership 79
4.10 Determine who is currently on the system or the last time a user was on the

system . 81
4.11 Enable accounting and view system usage statistics 83

5 Basic System Administration 85
5.1 Determine which processes are consuming the most CPU 86
5.2 View and send signals to active processes 89
5.3 Use an rc.d script to determine if a service is running and start, restart or

stop it as required . 90
5.4 Configure a service to start at boot time . 93
5.5 View and configure system hardware . 94
5.6 View, load, or unload a kernel module . 94
5.7 Modify a kernel parameter on the fly . 95
5.8 View the status of a software RAID mirror or stripe 98
5.9 Configure system logging . 100
5.10 Configure log rotations . 101
5.11 Review log files to troubleshoot and monitor system behavior 102
5.12 Determine which MTA is being used on the system 102
5.13 Create or modify email aliases for Sendmail or Postfix 103
5.14 View the Sendmail or Postfix mail queue 105
5.15 Read mail on the local system . 106
5.16 Understand basic printer troubleshooting 107
5.17 Halt, reboot, or bring the system to single-user mode 108

iv

Contents

5.18 Recognize the difference between hard and soft limits and modify existing
resource limits . 111

5.19 Recognize common, possibly third-party, server configuration files 112
5.20 Configure the scripts that run periodically to perform various system main-

tenance tasks . 113
5.21 Determine the last system boot time and the workload on the system 114
5.22 Monitor disk input/output . 115
5.23 Deal with busy devices . 117
5.24 Determine information regarding the operating system 117
5.25 Understand the advantages of using a BSD license 119

6 Network Administration 121
6.1 Determine the current TCP/IP settings on a system 122
6.2 Set a system’s TCP/IP settings . 124
6.3 Determine which TCP or UDP ports are open on a system 126
6.4 Verify the availability of a TCP/IP service 127
6.5 Query a DNS server . 128
6.6 Determine who is responsible for a DNS zone 132
6.7 Change the order of name resolution . 134
6.8 Convert a subnet mask between dotted decimal, hexadecimal or CIDR notation135
6.9 Gather information using an IP address and subnet mask 137
6.10 Understand IPv6 address theory . 139
6.11 Demonstrate basic tcpdump(1) skills . 139
6.12 Manipulate ARP and neighbor discovery caches 140
6.13 Configure a system to use NTP . 141
6.14 View and renew a DHCP lease . 142
6.15 Recognize when and how to set or remove an interface alias 143

7 Basic Unix Skills 145
7.1 Demonstrate proficiency in using redirection, pipes and tees 146
7.2 Recognize, view and modify environment variables 147
7.3 Be familiar with the vi(1) editor . 149
7.4 Determine if a file is a binary, text, or data file 154
7.5 Locate files and binaries on a system . 156
7.6 Overcome command line length limitations 157
7.7 Find a file with a given set of attributes . 158
7.8 Create a simple Bourne shell script . 159
7.9 Find appropriate documentation . 160
7.10 Recognize the different sections of the manual 161
7.11 Verify a file’s message digest fingerprint (checksum) 163
7.12 Demonstrate familiarity with the default shell 164
7.13 Use job control . 167
7.14 Demonstrate proficiency with regular expressions 170
7.15 Understand various “domain” contexts . 171
7.16 Configure an action to be scheduled by cron(8) 172

v

Contents

Index 174

vi

Introduction

Author: Jeremy C. Reed ?? NetBSD/FreeBSD/OpenBSD/DragonFly
Reviewer: name ?? ??
Reviewer: name ?? ??

TODO: put correct title here:
Welcome to the Quick Guide to BSD Administration. This book is a quick reference and

great way to quickly learn BSD administration skills. These topics are based on the objectives
published by the BSD Certification Group in the 2005 BSDA Certification Requirements Doc-
ument. The BSDA (BSD Associate) Certification is for BSD Unix system administrators with
light to moderate skills.

This book provides basic examples and pointers to further documentation and learning re-
sources. This book is not a comprehensive reference. While this is a beginner’s book, it is also
useful for experienced administrators.

This book covers generic *BSD administration and specific skills as necessary for NetBSD,
FreeBSD, OpenBSD and DragonFly BSD.

Credits

This book was written by a community of BSD experts and fans who collaborated via a wiki
website where anyone could contribute with writing, reviewing, proofreading and sharing valu-
able feedback.

TODO: this section might be partially generated from the list of known authors and technical
reviewers.

• Yannick Cadin

• Fred Crowson

• Grzegorz Czapliński

• Ceri Davies

• Hubert Feyrer

• Mark Foster

• Kevin D. Kinsey

• Jacob Kitchel

• Andreas Kuehl

• Cezary Morga

vii

Contents

• Alex Nikiforov

• Jeff Quast

• Jeremy C. Reed

• Chris Silva

• Sean Swayze

• Ion-Mihai Tetcu

• Ivan Voras

Also a big thank you to Hiroki SATO and AllBSD.org for providing a server for hosting the
book development website.

TODO: maybe mention software used in the creation of this project

Conventions

TODO: this section will describe the format and typefaces used for examples, input, output,
pathnames, etc. as to be seen in the final printed format. The ?? will document how this can
be done in the wiki.

viii

1 Installing and Upgrading the OS and
Software

Author: Ion-Mihai Tetcu itetcu@FreeBSD.org FreeBSD
Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD

XXX: I plan to write only the FreeBSD part so we still need authors for the rest (itecu)
An important aspect of system administration is tracking installed versions of both the op-

erating system and third-party applications. An advantage of using BSD systems is the avail-
ability of multiple tools to assist the system administrator in determining software versions
and their dependencies. These tools indicate which software is out-of-date or has existing se-
curity vulnerabilities. Assist in upgrading or patching software and its dependencies. When
and how installations and upgrades are done is specific to each organization. The successful
admin knows how to use the tools which are available for these purposes, and the cautions
that are necessary when working on production systems under the supervision of a more senior
administrator.

• 1.1

• 1.2

• 1.2

• 1.3

• 1.5

• 1.6

• 1.7

• 1.8

• 1.9

• 1.10

1

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

1.1 Recognize the installation program used by each
operating system

Author: hubertf, David Stanford dthomas53_at_gmail_dot_com FreeBSD
Reviewer: David Stanford dthomas53_at_gmail_dot_com FreeBSD
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

Concept

While BSDA candidates are not expected to plan an installation, they should be able to start
and complete an installation according to a provided list of requirements. Since the install
procedure is operating system dependent, it is recommended that the candidate have prior
experience in the default install routine for each tested BSD operating system. Have some
familiarity with release numbering practices in general (e.g. “dot-zero releases”) and where to
find the release engineering practices at each BSD project’s website.

Introduction

This section first goes into release naming, then describes how to access the installer.

Release naming

The list below details the release names as shown e.g. by “uname -r” for a given operating
system version. This may be different from the branch names used in any version control
system, e.g. the stable branch that leads up to NetBSD 4.1 lists version numbers as 4.1_BETA
from “uname -r”, in CVS the branch is called “netbsd-4”. The list below covers the former
data, the latter item is covered elsewhere.

The following release version numbers are available:

• Development branch (“-current”) naming scheme:

– NetBSD: 4.99.x (bumped for kernel API/ABI changes)

– FreeBSD: 7.0-CURRENT

– OpenBSD: 4.0-current

• Alpha release naming scheme:

– NetBSD: -

– FreeBSD:

– OpenBSD:

• Beta release naming scheme:

– NetBSD: 4.0_BETA, 4.1_BETA, ...

– FreeBSD: 6.2-BETA1, 6.2-BETA2, ...

2

1.1. RECOGNIZE THE INSTALLATION PROGRAM USED BY EACH OPERATING
SYSTEM

– OpenBSD: 4.0-beta

• Release candidate naming scheme:

– NetBSD: 4.0_RC1, 4.0_RC2,
– FreeBSD: 6.2-RC1, 6.2-RC2, ...
– OpenBSD:

• Full (major / “dot”) release naming scheme:

– NetBSD: 4.0, 5.0, ...
– FreeBSD: 5.0-RELEASE, 6.0-RELEASE, ...
– OpenBSD: 3.8-release, 3.9-release, 4.0-release

• Stable branch version naming scheme:

– NetBSD: 3.0_STABLE, 3.1_STABLE, 5.0_STABLE
– FreeBSD: 6.1-STABLE, 6.2-STABLE, ...
– OpenBSD: 3.9-stable 4.0-stable

• Bugfix/feature update release naming scheme:

– NetBSD: 3.1, 3.2, 4.1, 4.2, ...
– FreeBSD:
– OpenBSD:

• Security branch version naming scheme:

– NetBSD: 3.0.1_PATCH
– FreeBSD: 6.1-RELEASE-p1, 6.1-RELEASE-p2, ...
– OpenBSD: 4.0-stable

• Security update release naming scheme:

– NetBSD: 3.1.0, 3.1.1, 4.2.1, 4.2.2, ...
– FreeBSD: 6.1-SECURITY
– OpenBSD:

Installer

NetBSD

Most NetBSD ports use the ’sysinst’ installer, a few still provide the old script-based installer
as an alternative. The installer is usually started automatically when booting install media, and
doesn’t need to be started manually. Install media in various formats (depending on the port)
can be found in a NetBSD release’s “installation” subdirectory.

Major, minor (stable) and security NetBSD releases can be found at ftp.NetBSD.org (and
its mirrors) in /pub/NetBSD, ISO images are in /pub/NetBSD/iso and daily snapshots of the
various branches can be found on the same host in /pub/NetBSD-daily. The development
branch “NetBSD-current” can be found in the “HEAD” directory.

3

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

FreeBSD

For years now FreeBSD has used an installer known as ’sysinstall’ to install its operating
system on a variety of computer architectures. While most modern installers use graphical
interfaces for ease of use, sysinstall is a text-based installer consisting of a series of menus used
for configuring necessary installation parameters. Despite its appearance, however, sysinstall is
more than adequate at performing common installation configurations, including partitioning
hard disks, configuring network interfaces, creating additional users and adding third-party
software. The traditional method for installing FreeBSD is often through the use of some form
of boot media; for instance, floppy disks or compact discs. Booting into sysinstall is simply a
matter of setting your BIOS to the correct “boot priority”, which would usually mean setting
your floppy or CD-ROM drive as the first boot option.

BSDA candidates should be familiar with the menus and options presented by sysinstall
during installation. This includes partitioning your system’s hard disks using the FDisk utility,
applying the filesystem layout, choosing the correct distribution set, selecting the proper instal-
lation media, configuring local resources (such as network interfaces and timezone settings),
adding user accounts, setting start-up services and adding additional software sets. BSDA can-
didates should also be capable of locating additional resources online through the use of search
engines, forums and mailing list archives. The FreeBSD Handbook also covers installation
using sysinstall in-depth and should be considered your primary resource for information. As
with nearly every software utility in the *BSD family, a manual page also exists describing
both sysinstall’s features and purpose.

ISO images, used for creating bootable installation CDs, can be found from FreeBSD’s pri-
mary FTP server, ftp.FreeBSD.org. FreeBSD, through community support, also has numerous
mirror sites available for downloading images. Depending on which site you choose, images
for current and past releases may be available, including snapshots of both STABLE and CUR-
RENT source branches. Ideally, only official RELEASE images should be used for production
systems (e.g. 6.2-RELEASE).

OpenBSD

OpenBSD’s installer is a straight forward install script with no curses or X. For each archi-
tecture there is an INSTALL.[arch] which goes through the installation of OpenBSD on that
architecture in detail. It behaves the same on all architectures with every method of installation.
Installing OpenBSD is usually done using either a floppy boot image, a bootable CD, booting
across a network e.g. PXE on i386 (not available on all architectures). Only changes in the
BIOS/Open Firmware will select what installer will be run.

A BSDA candidate should be familiar with the different installation methods, the op-
tions presented once the installer is started (Install/Upgrade/Shell), and setting up disks using
fdisk(8) and disklabel(8). The candidate should also know the different installation sets to be
installed and what each one adds to the system, how to merge changes in case of update. After
the first reboot the BSDA applicant should be able to add and delete users and groups, to add
and remove packages and to secure the system. These points will be discussed in greater depth
later in the book.

4

1.1. RECOGNIZE THE INSTALLATION PROGRAM USED BY EACH OPERATING
SYSTEM

Examples

NetBSD

Release version numbers: see above
Installer:
For NetBSD/i386, download e.g. the ’boot[12].fs’ floppy images or the ’i386cd-*.iso’ ISO

image. Installation floppies for machines with little memory are in the ’boot-small?.fs’ files,
the ’bootlap-*.fs’ floppies have drivers for laptops, and the ’boot-com?.fs’ images are useful
for machines with serial consoles.

FreeBSD

For FreeBSD-6.2-RELEASE/i386, download the following images (for installation using flop-
pies or CDs, respectively):

Floppy Images:

• boot.flp

• kern1.flp

• kern2.flp

ISO Images:

• 6.2-RELEASE-i386-disc1.iso

Verify the integrity of each downloaded image using either MD5 or SHA256. The images
can then be written or burned to their respective media using a utility of your choice (such
as dd(1) for floppy images or burncd(8) for the ISO images). Once the images are placed on
their respective media, setting your system’s BIOS to the correct boot sequence and booting
the system is all that’s left. Assuming everything goes without error, you should eventually be
prompted with the initial sysinstall screen asking you to choose your country/region.

OpenBSD

For OpenBSD 4.0-release, download any of the following images (for installation using flop-
pies or CDs, respectively) some of these images are not available on all platforms:

Floppy Images:

• floppy40.fs

• floppyB40.fs

• floppyC40.fs

ISO Images:

• cd40.iso

• cdemu40.iso

Verify the integrity of the downloaded image. Each image has a specific purpose. The
candidate should know which image to boot depending on the hardware.

5

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

Practice Exercises

More information

Release naming

http://www.netbsd.org/Releases/release-map.html for NetBSD
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/releng for FreeBSD
http://openbsd.org/faq/faq5.html#Flavors

Installer

http://www.bsdinstaller.org for DragonFly, sysinstall(8) for FreeBSD, sysinst on NetBSD in-
stall media, and INSTALL.[arch] on OpenBSD install media

http://openbsd.org/faq/faq4.html#MkInsMedia

1.2 Recognize which commands are available for upgrading
the operating system

Author: David Stanford dthomas53_at_gmail_dot_com FreeBSD
Reviewer: David Stanford dthomas53_at_gmail_dot_com FreeBSD
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

Concept

Recognize the utilities which are used to keep the operating system up-to-date. Some utilities
are common to the BSDs, some are specific to certain BSD operating systems and some are
third-party applications.

Introduction

Binary vs. from-source

NetBSD

There are several ways to upgrade your NetBSD system. The easiest method is to boot the
installation CD-ROM and follow the steps in sysinst for upgrading your system. But this may
not be possible on all NetBSD platforms, therefore the best way is to recompile a full release
from the sources and upgrade your system. When done, you need reboot into your new system.

FreeBSD

As of FreeBSD 6.2, FreeBSD offers methods for upgrading both its kernel and userland either
through binary upgrades or by compiling directly from source code. As is often the case with
Open Source operating systems, upgrading FreeBSD using binary packages is much easier and
less time consuming than compiling from source code. However, what binary packages don’t

6

1.2. RECOGNIZE WHICH COMMANDS ARE AVAILABLE FOR UPGRADING THE
OPERATING SYSTEM

offer you is the ability to customize your kernel or modify the source code using third-party
or in-house patches. As a result, upgrading from binary packages only permits you to apply
a GENERIC kernel to your system, allowing no room for modifications. By compiling from
source code, you are able to make changes to your kernel configuration file, adding or removing
additional features and hardware modules that you may or may not need for your system. With
the source code, you are able to make any changes you wish and then compile them into your
system.

FreeBSD 6.2 introduces a new utility into its base system for upgrading via binary updates,
appropriately called freebsd-update(8). freebsd-update has a very simple and straightforward
argument set meant to make keeping FreeBSD systems updated with minimal fuss. Using this
utility, you are able to download compressed binary images of both the kernel and/or userland,
and install them when ready - all without interrupting your system. Then, when ready, a simple
reboot is all that is required to load your newly installed kernel. freebsd-update also comes
with a “rollback” feature in the event that your system doesn’t take well to your newly installed
binaries, in which case you can easily revert back to your previous kernel and userland, again,
with minimal fuss.

Prior to FreeBSD 6.2, the only way for administrators to upgrade their systems (outside of
a complete reinstall) was to compile everything from source code. Even with the introduction
of freebsd-update, compiling the system from source is still the preferred method for many
system administrators. To compile from source, you must first download the source code. Tra-
ditionally, this is done using a utility called CVSup, which can be found in the ports collection
or added as binary package using pkg_add(1). Using CVSup and a simple text file or command
line arguments specifying, among other parameters, the CVS server to retrieve the source code
from, directory to store the files in and a release tag (e.g. ’RELENG_6_2_0’ for FreeBSD
6.2-RELEASE), the entire FreeBSD source tree can be downloaded at whim.

As an additional note, future versions of FreeBSD are also likely include a utility called
CSup. CSup is nothing more than a rewrite of the current CVSup utility in the C programming
language. CSup is expected to contain the same feature set as CVSup, but since it is to be
rewritten in C, it will be much easier for future developers to maintain and for cross-platform
compatibility.

OpenBSD

The safest and easiest way to upgrade an OpenBSD machine is to boot from install media, and
follow the upgrade steps, this process is similar to the install process. This can be achieved
quickly on a running OpenBSD system by copying the upgrade version of bsd.rd kernel image
to the / directory of the system, then rebooting the system, and typing boot bsd.rd at the boot>
prompt, and then choosing the Upgrade script.

The upgrade process is detailed in the FAQ at http://www.openbsd.org/faq/upgrade40.html
The system can be built from source as described at http://www.openbsd.org/faq/faq5.html

but this is for following the stable branch. Upgrading via source is NOT supported.

DragonFly BSD

XXX

7

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

Examples

Practice Exercises

More information

make(1) including the ’buildworld’, ’installworld’, and ’quickworld’ and similar targets;
mergemaster(8); cvs(1) and the third-party utilities cvsup and cvsync; build.sh, etcupdate(8),
postinstall(8) and afterboot(8); src/UPDATING and src/BUILDING.

1.3 Understand the difference between a pre-compiled
binary and compiling from source

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

Concept

Be familiar with the default location of both the ports collection and the pkgsrc collection and
which BSDs use which type of collection. Also be able to recognize the extension used by
packages. In addition, be aware of the advantages and disadvantages of installing a precom-
piled binary and the advantages and disadvantages of compiling a binary from source.

Introduction

The BSD operating systems provide software build systems for installing third-party add-on
software from source code.

Location of ports collection: /usr/ports (FreeBSD, OpenBSD)
Location of pkgsrc collection: /usr/pkg (NetBSD, DragonFly)
Location of packages: /var/db/pkg/ (FreeBSD)
Extension used by packages: TODO (tgz, tbz?)
Installing a precompiled binary or Compiling a binary from source: Precompiled binaries

are quick and easy to install but they don’t allow for customization of the binary to a system’s
particular needs. Compiling a binary from source allows for customization, but can take a long
time on slower or older systems.

Examples

Practice Exercises

More information

Dragonfly and NetBSD provide pkgsrc/pkgtools/pkg_chk, pkgsrc/pkgtools/pkg_comp, make
update and make replace; portupgrade, portsnap and cvsup are available as third-party utilities

8

1.4. UNDERSTAND WHEN IT IS PREFERABLE TO INSTALL A PRE-COMPILED
BINARY AND HOW TO DO SO

1.4 Understand when it is preferable to install a
pre-compiled binary and how to do so

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD

Concept

TODO: Suggest that this be s/binary/package/
Be aware that while pre-compiled binaries are quick and easy to install, they don’t allow the

customization of the binary to a system’s particular needs. Know how to install a pre-compiled
binary from either a local or a remote source, as well as how to uninstall a pre-compiled binary.

TODO: this concept seems to overlap 1.2 . Maybe reword these (and let Group know).

Introduction

It’s preferable to install a precompiled binary when you’re running on an older and/or slower
machine or your setup is generic enough to not require customization.

pkg_add: a utility for installing software package distributions, used to extract packages that
have been previously created with pkg_create (TODO: is pkg_create for openbsd? is that even
applicable for this book?).

pkg_add pkg_name [pkg_name ...] can install the listed packages in pkg_name
pkg_add -v pkg_name turns on verbose output
pkg_add -n pkg_name doesn’t install package, just reports the steps necessary to do so
pkg_delete: a utility for deleting previously installed software package distributions that

were previously installed with the pkg_add command
pkg_delete pkg_name deinstalls named packages
pkg_delete -a unconditionally deletes all currently installed packages (TODO: what about

OpenBSD and pkgsrc?)
pkg_delete -n pkg_name lists steps for deinstalling without deinstalling
pkg_delete -f pkg_name forces deinstallation even if a dependency is recorded or deinstall

fails

Examples

Practice Exercises

More information

pkg_add(1), pkg_delete(1)

9

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

1.5 Recognize the available methods for compiling a
customized binary

TODO: should this be renamed s/a customized binary/customized packages/ ?
Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

Concept

Many applications used by servers support make(1) options to compile a binary with the feature
set required by a particular installation. While the BSDs all use make(1), the admin should
recognize that each BSD uses different mechanisms to use and preserve make(1) options.

Introduction

FreeBSD Ports

FreeBSD ports includes a /usr/ports/KNOBS file that lists commonly-used options with their
descriptions. These “knobs” can be used with WITH_* or WITHOUT_* make variables, for
example: WITH_APACHE2, WITH_ISPELL, and WITHOUT_X11. Some ports honor op-
tions like these to override the defaults.

TODO: cover /var/db/ports/portname /options, make showconfig, make rmconfig,
TODO: show examples

Examples

Practice Exercises

More information

DragonFly: mk.conf(5) or make.conf(5), PKG_OPTIONS, CFLAGS FreeBSD: -DWITH_* or
WITH_*=, pkgtools.conf(5), make.conf(5) NetBSD: PKG_OPTIONS., CFLAGS, mk.conf(5),
PKG_DEFAULT_OPTIONS OpenBSD: bsd.port.mk(5)

Add: /usr/ports/KNOBS

1.6 Determine what software is installed on a system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

10

1.7. DETERMINE WHICH SOFTWARE REQUIRES UPGRADING

Concept

Recognize that on BSD systems, software and dependencies are tracked by a package manager
if the software was installed using packages, ports or pkgsrc. Be familiar with querying the
package manager to determine what software and their versions are installed on the system.

Introduction

TODO: what about non-packages?

Examples

pkg_info -a shows all installed packages (TODO: is -a needed on all platforms)

Practice Exercises

More information

pkg_info(1)

1.7 Determine which software requires upgrading

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD

Concept

Recognize the importance of balancing the need to keep software up-to-date while minimizing
the impact on a production system. Dragonfly and NetBSD use pkgsrc which provides utilities
for determining which installed software is out-of-date. FreeBSD provides pkg_version and
third-party utilities are also available which integrate with the BSD package managers.

Introduction

Examples

Practice Exercises

More information

pkgsrc/pkgtool/pkg_chk and make show-downlevel for Dragonfly and NetBSD; pkg_version(1),
and the third-party portupgrade

11

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

1.8 Upgrade installed software

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD

Concept

Recognize the built-in and third-party commands which are available for upgrading installed
software on BSD systems. In addition, be able to recognize which BSD systems use pkgsrc.

TODO: this concept is redundant; if this is about packages should say “packages” and pkgsrc
is introduced earlier?

Introduction

Examples

Practice Exercises

More information

Dragonfly and NetBSD provide pkgsrc/pkgtools/pkg_chk, pkgsrc/pkgtools/pkg_comp, make
update and make replace; portupgrade, portsnap and cvsup are available as third-party utilities

1.9 Determine which software have outstanding security
advisories

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD/OpenBSD

Concept

Recognize the importance of being aware of software security vulnerabilities. Also recognize
the third-party utilities which integrate with the BSD package managers to determine which
software has outstanding vulnerabilities.

Introduction

portaudit: system to check installed packages for known vulnerabilities
portaudit -a prints a vulnerability report for all installed packages
portaudit -F getches current database from FreeBSD servers
portaudit -Fa (does both at one time, very useful)
TODO: mention enabling periodic portaudit script

12

1.10. FOLLOW THE INSTRUCTIONS IN A SECURITY ADVISORY TO APPLY A
SECURITY PATCH

Examples

The following is an example of using portaudit on FreeBSD. (The “-d” option prints the date
of the vulnerability database.)

$ /usr/local/sbin/portaudit -Fda
New database installed.
Database created: Fri Jan 26 09:40:17 PST 2007
Affected package: php5-5.1.2_1
Type of problem: php - open_basedir Race Condition Vulnerability.
Reference: \
1 problem(s) in your installed packages found.
You are advised to update or deinstall the affected package(s) immediately.

Practice Exercises

More information

audit-packages for Dragonfly and NetBSD; portaudit and vuxml for FreeBSD and OpenBSD
TODO: verify for OpenBSD?

1.10 Follow the instructions in a security advisory to apply a
security patch

Author: ??
Reviewer: name ?? ??
Reviewer: Chris Silva racerx@makeworld.com FreeBSD

Concept

• Be aware that each BSD project maintains security advisories which are available both
on the Internet and via mailing lists.

• Be able to follow the instructions in an advisory when asked to do so by a supervisor.

Introduction

On occasion, experienced programmers and security researchers find “bugs” in any computer
operating system. Some errors may allow unauthorized use of, or control over, system re-
sources and are therefore classed as “security issues”. Organizations such as SANS and MITRE
publish advisories regarding these “security issues” for many operating systems. As responsi-
ble “citizens” of the computing world, the BSD Projects maintain their own security officers
and/or teams that work with other organizations to provide information about and security
“fixes” for issues discovered in their software.

A BSD system administrator should habitually check for security advisories issued by their
Project. While you could check at MITRE or SANS, it is best to get your information directly

13

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

from the source — your own Project’s security team or officer (after all, they are the ones who
are supplying the information to others, anyway!)

Finding Information on Security Advisories

The BSD Projects are excellent at fixing security issues quickly. All Projects maintain security
mailing lists and post security advisories on their sites. To read more about each Project’s
security efforts, see:

• FreeBSD: http://www.freebsd.org/security

• NetBSD: http://www.netbsd.org/security

• OpenBSD: http://www.openbsd.org/security.html

To see which mailing lists are available, visit the following:

• FreeBSD: http://lists.freebsd.org/mailman/listinfo

• NetBSD: http://www.netbsd.org/MailingLists/

• OpenBSD: http://www.openbsd.org/mail.html

It’s a pretty safe bet that each Project’s “announce” list will send you mail in the event of
a security advisory; there may be a better option, though. Check your Project’s site for more
details.

Sample Security Advisories

• http://security.freebsd.org/advisories/FreeBSD-SA-07:01.jail.asc

• http://ftp.netbsd.org/pub/NetBSD/security/advisories/NetBSD-SA2006-027.txt.asc

• http://www.openbsd.org/errata.html#agp

Dealing with Security Advisories

A security advisory usually contains detailed, concise instructions on how to rectify the issue.
Generally there are three options, which will be briefly discussed below:

1. Update the operating system to a corrected version/date;

2. Patch the affected part(s) of the operating system and rebuild the binaries (kernel);

3. “work around” the issue by disabling the affected service or a dependent condition that
allows the exploit.

Note that with some Projects, advances are being made that will allow you to securely down-
load corrected binaries (if so, this would be considered a “fourth option”; it should be men-
tioned in the advisory text, if such an options exists).

14

1.10. FOLLOW THE INSTRUCTIONS IN A SECURITY ADVISORY TO APPLY A
SECURITY PATCH

Updating the operating system

In almost every case, the Project’s programmers will have corrected the security fault at the
time the advisory is released, so upgrading to the latest version or “updated branch” of your
operating system (if that is allowed by the situation) will “close” the security “hole”. See the
section 1.2 for more details on upgrading, and see

Patch the Affected Parts of the Operating System

(Note : Now would be a great time to go back and read 1.2 ... if you skipped that part by
mistake).

Along with the Security Advisory, your Project will likely have provided a software “patch”
for the source code files involved in the issue. Following the instructions in the advisory, you
can download the patch, verify its authenticity, and use your system’s build tools (including
patch(1), make(1), and others) to rebuild the affected parts of the operating system. Note that
if the issue involves the OS’s “kernel”, you may need to rebuild the kernel and reboot.

What’s a ’patch’, anyway?

A patch is generally a small text file (generated by diff(1)) which contains only the “changes”
made between two versions of a source code file(s) - the “previous version” (which contains
code in which the “issue” was found) and the “corrected version” (in which the programmer(s)
have “fixed” the “issue”). On systems that contain the “source code” for the affected software
(the operating system, or the 3rd party utilities/packages/ports, etc.), you can use patch(1) to
update the affected source files to the “corrected version”. At this point, depending on your
BSD flavor, you would use tools (the same or similar to those used in updating the operating
system) to create new binaries on the affected system and remove the danger inherent in the
security advisory.

See the “Examples” section below for more details.

“Work-Around” the Issue

In some cases, a “work-around” may solve the problem, but generally this involves a “trade-
off”: you can’t use feature “X” if you’ve disabled it due to a security issue. You may need to
consult a senior systems administrator to determine whether a “workaround” would be appro-
priate for the system(s) you are responsible for.

One thing is certain: in the rare case were a security issue is known to be “exploitable” and
“in the wild”, and a fix (such as a kernel compile or rebuild of the OS) may be an hour (or a
half-day) in coming, it might be wise to “workaround” the issue to avoid a security breach on
the system. However, you will notice I said, “in the rare case”.... Most generally, the issues
are found and fixed before exploits are available “in the wild”. Once your new kernel or OS
binaries are up and running, the affected subsystem(s) should be “re-enabled”.

Examples

Here are excerpts from a FreeBSD Security Advisory:

15

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

FreeBSD-SA-06:25.kmem Security Advisory
The FreeBSD Project

Topic: Kernel memory disclosure in firewire(4)
Category: core
Module: sys_dev
Announced: 2006-12-06
Credits: Rodrigo Rubira Branco
Affects: All FreeBSD releases.
Corrected: 2006-12-06 09:13:51 UTC (RELENG_6, 6.2-STABLE)

2006-12-06 09:14:23 UTC (RELENG_6_2, 6.2-RC2)
2006-12-06 09:14:59 UTC (RELENG_6_1, 6.1-RELEASE-p11)

Hopefully this is self-explanatory; generally the advisory is signed with the security officer’s
PGP key (not shown here) and includes some data that would allow you to quickly determine
if your system(s) might be affected. Since this issue is a “core” issue that affects “all” releases,
probably your FreeBSD system needs some attention.

In this particular advisory, the text following the quote above lets us know that the problem
is with the firewire(4) driver, the problem is that a signed integer was used by the programmer
when an unsigned integer was needed, and that the issue centers on the possibility that a
member of the “operator” group might be able to read kernel memory (which could contain
sensitive information). If this was a real shrewd “operator” (pun intended), it might be
possible to gain elevated privileges. Let’s read on:

IV. Workaround
No workaround is available, but systems without IEEE 1394 (“FireWire”)
interfaces are not vulnerable. (Note that systems with IEEE 1394
interfaces are affected regardless of whether any devices are attached.)
Note also that FreeBSD does not have any non-root users in the “operator”
group by default; systems on which no users have been added to this group
are therefore also not vulnerable.

So, if the system has a firewire interface (some might breathe a sigh of relief here) and real
users in the “operator” group, we must either update the entire system or patch the firewire
driver (which is built into the kernel). We’ll skip down to the nitty gritty:

2) To patch your present system:
The following patches have been verified to apply to FreeBSD 4.11, 5.5, 6.0, and 6.1 systems.
a) Download the relevant patch from the location below, and verify the detached PGP signature using your PGP utility.
fetch http://security.FreeBSD.org/patches/SA-06:25/kmem.patch
fetch http://security.FreeBSD.org/patches/SA-06:25/kmem.patch.asc
b) Apply the patch.
cd /usr/src
patch < /path/to/patch
c) Recompile your kernel as described in http://www.FreeBSD.org/handbook/kernelconfig.html and reboot the system.

16

1.10. FOLLOW THE INSTRUCTIONS IN A SECURITY ADVISORY TO APPLY A
SECURITY PATCH

Practice Exercises

More information

patch(1), make(1), and fetch(1), ftp(1) and build.sh

17

CHAPTER 1. INSTALLING AND UPGRADING THE OS AND SOFTWARE

18

2 Securing the Operating System

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

The mark of a good system administrator is the awareness of and adherence to best security
practices. An administrator is expected to be familiar with common security practices. BSD
systems are designed with security in mind and provide many mechanisms which allow the
system administrator to tune systems to the security requirements of an organization. While
the BSDA candidate won’t always be responsible for implementing these mechanisms, being
able to recognize the features and commands available for securing BSD systems is still an
essential aspect of overall security administration.

• 2.1

• 2.3

• 2.4

• 2.5

• 2.6

• 2.7

• 2.2

• 2.8

• 2.10

• 2.11

• 2.12

• 4.6

• 2.13

• 4.1

19

CHAPTER 2. SECURING THE OPERATING SYSTEM

2.1 Determine the system’s security level

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems provide security profiles known as securelevels. Be able to recognize the re-
strictions set by each securelevel for each BSD operating system. Also understand under what
circumstances a securelevel can be raised or lowered.

Introduction

The BSD kernels can limit – even from the superuser – changing immutable and append-only
file flags, TODO. File flags are covered in 3.13 .

In addition, on NetBSD the verified exec in-kernel fingerprint table can’t be modified.
You can look at current secure level via sysctl:

sysctl kern.securelevel
kern.securelevel: -1

TODO: list possible numbers and what the values mean for four BSDs.
TODO: document how to set via rc.conf for next boot
You can change this variable on the fly using sysctl. Using sysctl is covered in section 5.7 .

Examples

Practice Exercises

More information

init(8), sysctl(8), rc.conf(5)

2.2 Recognize basic recommended access methods

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be familiar with standard system administration practices used to minimize the risks associated
with accessing a system. These include:

• using ssh instead of telnet

20

2.2. RECOGNIZE BASIC RECOMMENDED ACCESS METHODS

• denying root logins

• (possibly) using the third-party sudo utility instead of su , and

• minimizing the use of the wheel group.

Introduction

Many BSD machines are used as “servers” in locations away from the system administrator.
Since the earliest days of networking, methods have been developed to access one machine
from a terminal or another machine. Access to remote machines, particularly those accessible
from the public Internet, must be secured from access by unauthorized personnel. In addition,
good security practice demands that we limit the number of people who know (or need to
know) root’s password at all.

Use SSH instead of Telnet or rsh/rlogin

Telnet(1) was an early implementation of a “remote control” application. Another early pro-
gram for remote administration was rsh/rlogin. While these are still valid for limited uses
today, they should never be used to administrate a machine over a network, because all data
in telnet(1) or rsh/rlogin is transmitted without encryption, or in “plain text”. Anyone with the
ability to run a “packet sniffing” program could read your password and all other transactions
between you and your system if you use telnet or rsh/rlogin. Except in limited circumstances,
such as in a locked-down facility with hungry guard dogs and a single armored cable which no
one else can access between you and the server, which is in plain sight and surrounded by an
electric fence, don’t use rsh , rlogin or telnet , OK? Use SSH instead!

SSH consists of two programs developed by the OpenBSD team, ssh(1) and sshd(8). ssh is
a client program which provides terminal access (and other features) to another machine. sshd
is a server daemon which runs on the “other machine”. Together, these two programs provide
all the features (and more) of rsh/rlogin and telnet, and also provide you with more security —
using SSH ensures your sessions are protected by strong encryption.

More about SSH appears in the following paragraphs and the next three sections.

Deny Root Logins

Since the “root” account can do anything at all to a system, good security practice requires that
root logins be restricted to the physical console of the machine itself, and, usually, only in dire
circumstances. Both local and remote (SSH!!) logins should be as a “normal” user, and normal
users who need to run programs that require root’s authority should use an alternate method to
“get root”.

Reasons for this are many, vary in importance to various individuals, and are frequently
discussed in newsgroups, e-mail lists, internet forums, and other materials. Briefly, here are
some things to think about:

*The “onion” principle of security: if someone compromises remote access, is it better
that they get limited capabilities, or root privileges? What if they have access to the machine’s
console and have seen someone login a few times? If so, what if their memory is photographic?

21

CHAPTER 2. SECURING THE OPERATING SYSTEM

*The “oh my!” principle of sanity: someday, sometime, someone will have a bad day. If
someone is logged in as root when that happens, the possibility for much more damage exists.
The classic example of this argument is in the use of rm(1), but plenty of Bad Stuff(tm) can
happen with chown(8), chmod(1), and other programs. File permissions are one protection
from these types of errors, but permissions don’t do any good if you’re logged in as root when
a mistake occurs.

*The “oh no!” principle of spitefulness: in real life and real work, people get fired, canned,
removed, terminated, and, sometimes, angry about it. If your superior fires a team member
on a day when you’re not there to turn off their access to the system, and they know the root
password, there is a chance, no matter how “nice” that person may seem, of them manifesting
a streak of vindictiveness prior to cleaning out his/her desk or cubicle.

For more on this subject, keep reading. To set sshd to deny root logins, see the next section
2.3 .

su(1), the “wheel” group, and sudo(8)

Since we want all logins to be by “normal” users, how will we accomplish tasks like software
installation, modifying system-wide configuration files, restarting daemons, or rebooting the
system?

Traditionally, anyone who has a need to do this sort of chore is a member of the “wheel”
group. Only members of this group are allowed to use the su(1) program to gain root privileges.
In order to “get root” with su , you must know the root password.

More recently, many system administrators use sudo(8) to allow root privileges. Sudo was
developed at SUNY/Buffalo in 1980 and is currently maintained by OpenBSD; it is available
in their default install, or via the ports/packages system on other BSD flavors.

sudo is highly configurable, contains extra notification and security mechanisms, and can
even be configured to allow groups of users access to a limited set of commands (for example,
to allow the webmaster to restart the www daemon, but not restart the system, or to allow
normal users to mount and unmount media but not erase them, etc.)

For more information about sudo, install it and read the manpage, or visit http://www.sudo.ws/

Examples

Connecting to a remote machine:

$telnet myserver.example.com
Trying 6.7.8.9...
telnet: connect to address 6.7.8.9: Connection refused
Trying 6.7.8.9...
telnet: connect to address 6.7.8.9: Connection refused
telnet: Unable to connect to remote host

Good! Telnetd isn’t enabled on your remote machine!

$ssh me@myserver.example.com

You may see a banner message at this point. If you are using password-based
authentication, you will be prompted:

22

2.2. RECOGNIZE BASIC RECOMMENDED ACCESS METHODS

Password:

Enter your passphrase and you will see information from various files and programs;
among them, last(1), uname(1), and /etc/motd:

Last login: Wed Jan 10 11:29:26 2007 from 9.8.7.6
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 6.0-RELEASE-p13 (GENERIC) #3: Thu Sep 28 20:02:55 CDT 2006
Welcome to FreeBSD!

If you use key-based authentication, no password is required. Your shell resource scripts
will be called, your environment set up, and you should receive a shell prompt:

$

You are now “logged in”.

a word about “user@host” syntax

In the example above we used “user@hostname” with ssh to specify the remote account and
remote server to connect to. Other methods to specify the username include editing the local
/.ssh/config file or using the “-l” flag when calling ssh . If you simply “ssh hostname”, ssh will
attempt a login using the name given by id(1).

Using su and sudo to gain root privileges:

Let’s do a chore that requires root’s power to accomplish. Suppose we want to enable natd(8),
the “Network Address Translation Daemon”, at the next bootup:

$ echo ’natd_enable=”YES”’ >> /etc/rc.conf
/etc/rc.conf: Permission denied.

As a “normal” user, you can’t append (or edit) /etc/rc.conf; it’s owned by root and
“chmodded” to 744. So, use su :

$ su
Password:

If you are in the wheel group, you are prompted for the root password (if you are not in the
wheel group, you simply get “Su: sorry”). If you enter root’s password correctly, you get a
new shell with root’s prompt and environment. Now try the command:

echo ’natd_enable=”YES”’ >> /etc/rc.conf

It succeeds silently, and the directive is added to the rc.conf file.
If sudo(8) is on your system, you must edit the sudoers file as root before attempting to use

sudo . Use the visudo(8) program to invoke your $EDITOR on the sudoers file, and set
permissions appropriately. After this, allowed users should be able to use sudo as a preface to
their “root level” commands, like this:

23

CHAPTER 2. SECURING THE OPERATING SYSTEM

$ sudo shutdown -r now

Depending on sudo’s configuration, the command may succeed silently, or the user may
be prompted for their own password (instead of the root password). Being configured to run
sudo without a password prompt is very convenient, but the password prompt is also a great
behavior for at least two reasons: 1] it means that the administrators don’t have to actually
know the root password to do “important” tasks, thereby protecting password integrity, and 2]
the user is reminded that he/she is about to do something using root privileges, and hopefully,
to look closely at the command they just typed before continuing.

Using the first example above, something strange seems to happen when prefaced by sudo :

$ sudo echo ’natd_enable=”YES”’ >> /etc/rc.conf
/etc/rc.conf: Permission denied.

This is because sudo executes the echo command, but stops at the redirect, so the “normal
user” is attempting to redirect to the protected file. It’s a tad tricky (watch the quotes!), but
here’s a way around this problem:

$ sudo sh -c echo “’natd_enable=”YES”’ >> /etc/rc.conf”

We have sudo call a single command, “sh -c”, as root, and this spawned /bin/sh process
takes care of the echo call and the redirection, all with root credentials. You could have similar
problems if you try something like “sudo foo && bar”; you would need to call sudo for both
commands, or do some quoting magic.

Practice Exercises

1. Attempt to use telnet(1) to a remote machine. If you get a password prompt, disconnect
immediately and call the machine’s administrator as soon as possible.

2. Use ssh(1) to connect to a remote machine.

3. If you are the system administrator/owner or a member of the wheel group on a system,
login as a normal user and use “su” to get root. Edit /etc/rc.conf and add the line:

This line added by me on date

4. If you are the system administrator/owner or a member of the wheel group, install sudo
and configure it to allow you to use it. Call “sudo $EDITOR /etc/rc.conf” at your prompt,
then remove the line you added in exercise 3.

More information

ttys(5), sshd_config(5), ftpusers(5); the (possibly third-party, depending on your BSD flavor)
utility sudo which includes visudo(8), suedit and sudoers(5).

24

2.3. CONFIGURE AN SSH SERVER ACCORDING TO A SET OF REQUIREMENTS

2.3 Configure an SSH server according to a set of
requirements

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware that the sshd(8) built into BSD systems can be configured to limit who can access a
system via SSH.

Introduction

The SSH daemon’s configuration file (‘/etc/ssh/sshd_config’) allows–among other things–
limiting remote users’ access to the system. For any changes made to the file to take effect
the sshd(8) daemon have to be either restarted or sent the SIGHUP signal. Sending signals to
processes is described in section 5.2 .

The following examples will present only a couple of available options along with a word
of explanation, concentrating mainly on those that might be usefull for limiting remote access.
The OpenSSH application suite is installed as a part of base system for all BSDs. The default
configuration is a good point to start.

Examples

Two most basic options for sshd(8) configuration are:

Port 22
Protocol 2

The first one defines on which port should sshd(8) listen on, while the latter specifies which
SSH protocol version should be used. It is advisable to use only SSH version 2.

Many administrators tend to change the listening port from default 22nd (assigned by IANA
for SSH communication) to one of the higher numbered. As far as it is a good idea for keeping
the logs clean from failed script kiddies’ logins attempts, it might also prevent legitimate users
from loging in if they’re connecting from behind a restrictive firewall. There are other means
to keep low profile without the need to actually change the default port number, as it will be
discussed later in this section.

Nevertheless, one of the most important issues is to define whether remote users will be
allowed to login directly to root account. Most definitely this should be forbiden. You or any
other administrator can login to your own accounts and then su(1) to root whenever necessary.

On all BSD systems–except OpenBSD–the default option for this is:

PermitRootLogin no

Next directive that should be taken into consideration is enabling public/private key pair
authentication. Setting up SSH keys is covered in section 2.4 .

25

CHAPTER 2. SECURING THE OPERATING SYSTEM

PubkeyAuthentication yes

If you have absolute certainty that all of the remote users can and know how to use SSH keys–
i.e. if these are only system administrators–you can disable password based authentication.

If you’re going to leave password authentication available, make sure that at least no empty
passwords will be allowed.

PasswordAuthentication yes
PermitEmptyPasswords no

Note, there are some situations that empty passwords will be required, i.e. when setting an
anoncvs repository.

Final mean of limiting remote access is by simply granting access only to given local
accounts and/or from given remote hosts. The following directive will allow login to Mike’s
account from host 192.168.186.11, and John’s from any host.

AllowUsers mike@192.168.186.11 john

There can also be defined system groups, which members will be able to login through
SSH, i.e. the staff group.

AllowGroups staff

The above reffers to deny all security model, that will allow access only for defined users
and/or groups. For the allow all model no AllowUsers or AllowGroups need to be speci-
fied. Furthermore, we can define which users or user groups are to be denied access using the
DenyUsers or DenyGroups directives respectively.

When combining all four directives they are processed in the following order: DenyUsers ,
AllowUsers , DenyGroups , and AllowGroups .

The AllowUsers and DenyUsers options can be used for global defining from which hosts
users can login. Users can also be given a possibility to define this for their own accounts them-
selves through the .rhosts file. Still, this directive refers only to logins authenticated correctly
through the SSH keys system.

To give such a possibility (default is no) set option:

HostbasedAuthentication yes

Note, that the global host list can be also defined in hosts.equiv file.

Practice Exercises

1. Check the sshd(8) configuration file on your system, add access and connection (proto-
col, port) limits. Verify the results connecting from different machine.

More information

sshd_config(5)

26

2.4. CONFIGURE AN SSH SERVER TO USE A KEY PAIR FOR AUTHENTICATION

2.4 Configure an SSH server to use a key pair for
authentication

Author: ??
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??

Concept

Understand private/public key theory including: which protocols are available for generating
key pairs, choosing an appropriate bit size, providing a seed, providing a passphrase, and veri-
fying a fingerprint. In addition, able to generate their own keys and use them for authentication.

Introduction

(Note: Some basics on configuring the SSH server are covered in section 2.3 .)
Passwords and passphrases help keep your system secure. However, passwords can be

guessed, leaked, or inadvertently disclosed in several ways. SSH authentication using “key-
based” authentication eliminates these potential vulnerabilities. In addition, strongly encrypted
keys can help protect against various other types of attacks by assuring that the host you intend
to connect to really is the correct host.

“Public-Key” Encryption and SSH

“Public-key” encryption uses a strongly-encrypted “public key” and “private key” pair; the pri-
vate key is kept secret, while the public key may be widely disseminated (as in PGP signatures
for e-mail). A user or machine can encrypt a “message” using the public key which cannot be
decrypted without knowledge of the “private key”. While the keys are mathematically related,
it is currently impossible, or at least extremely infeasible, to calculate the private key from the
contents of the public key.

In SSH key-based authentication, the public key is known to the SSH server(s) that you wish
to connect to, and the private key is known only by the SSH client program you are using.
During “setup” of the SSH connection, the SSH client first checks that the server’s public
key matches an entry in /.ssh/known hosts. If this check is successful, the client and server
exchange an encrypted message that can only be decoded with the use of the client’s private
key. If your client successfully decodes the message, you will be “logged in”.

If the security of using password authentication is a concern, it can disabled on the SSH
server, and only SSH clients which provide the correct key are allowed access. This will
disallow any attempt to enter your system using SSH and a passphrase, either by “crackers”
(which is good), or by you (which has a few ramifications!).

To configure an SSH server to use key-based authentication, edit the server’s configuration
file /etc/ssh/sshd_config and restart sshd(8) (see the previous section 2.3). You must also copy
your public key to the /.ssh/authorized_keys file on the remote machine. To learn more about
key creation, keep reading.

27

CHAPTER 2. SECURING THE OPERATING SYSTEM

Key Generation Algorithms

Two “standard” algorithms exist for the encryption of public-private key pairs - RSA and DSA.
RSA was developed in the late 1970’s by MIT researchers. The DSA algorithm was developed
by the US Government in the early 1990’s. In US government work (and probably in many
other circumstances/organizations) DSA keys are a required standard. ssh-keygen(1) can gen-
erate both RSA and DSA keys for use in key-based SSH authentication.

The SSH server daemon sshd(8) utilizes RSA keys when SSH protocol version 1 is used, and
can use both RSA and DSA keys for protocol version 2. ssh-keygen(1) can produce keys of ei-
ther type for both protocols; by default (when called without arguments), ssh-keygen produces
an RSA key for use with SSH protocol 2.

Using ssh-keygen

ssh-keygen(1) is used to generate keys for the SSH server (to assist in identification), and also
to generate keys for use in SSH client authentication. Generally, server keys are generated
when a machine is first booted after installation of the OS; they can be changed if necessary,
but this might have an impact on other systems. You should also read the next section 2.5 in
order to understand more about the server’s host keys.

Providing a Seed

Each time your system is booted with sshd enabled, rc(8) checks that your machine has gener-
ated RSA and DSA key pairs for use with SSH authentication. If it has not (for example, at first
boot), keys will be generated by the system using ssh-keygen. sshd does this automatically, but
if the system’s random number generator has not been seeded, you will need to help out from
the console. It may seem strange to be asked to “type a screenfull of random junk”, but this
is important — make it as random as possible. TODO: How do Net/Open/Drag handle this?
Same way? Is this even what we’re talking about here? See discussion.

Choosing an Appropriate Bit Size

The minimum bit size for an RSA-key is 768 bits; the default is 2048 bits. The default should
be good enough for most applications. You should probably avoid using the “minimum” bit
size for an RSA key. Some researchers believe that new computer systems may be able to break
fairly small RSA keys within 20-30 years (or perhaps even more quickly), but most believe that
keys as large as 1024 for RSA encryption will be safe for a very long time (“the suns [sic] going
to burn out before current desktop technologies can factor it”, writes one armchair analyst).

DSA keys must be 1024 bits according to the FIPS 186-2 specification.
You can specify the bit size for RSA key generation by using the “-b” option to ssh-keygen

.

Providing a Passphrase

Normally, both your public key and private key are stored locally in the directory /.ssh/. To
keep the private key secure from others, it is owned by the user and chmodded 600. However,
the file is plaintext, so it is possible that others might see your private key (for example, if they

28

2.5. PRESERVE EXISTING SSH HOST KEYS DURING A SYSTEM UPGRADE

have root privileges). For this reason, it may be a good idea to encrypt the private key. Note
that this refers to your SSH client’s key (in /.ssh/), not the machine’s key (in /etc/ssh). Setting
a passphrase on the machine’s key could cause some issues that we won’t go into detail about
here. TODO: check, please? At the very least, sshd(8) couldn’t start without it, right?

ssh-keygen can, either at the time of key creation or a later time, encrypt a private key (RSA
or DSA) using the 3DES algorithm and a passphrase. It can also change a encrypted key’s
passphrase (assuming you can provide the current passphrase). Passphrases should be 10-30
characters in length and may include any characters you want, including whitespace. Plain
words or sentences should be avoided — use something somewhat unusual!

Once your private key is encrypted, you must provide the passphrase each time you authen-
ticate. A lost key passphrase is a problem — a new key pair must be generated and the public
key copied to the SSH server. This could be fairly simple (for example, if you have console
access or another account with access to the SSH server), or very challenging (for example, if
your very remote, unattended SSH server will only allow key-based authentication for a single
account).

Examples

Practice Exercises

More information

ssh-keygen(1) including these keywords: authorized_keys, id_rsa, and id_rsa.pub

2.5 Preserve existing SSH host keys during a system
upgrade

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

In addition to knowing how to generate a system’s SSH keys, know where host keys are located
and how to preserve them if the system is upgraded or replaced.

Introduction

When sshd(8) is first run, a passwordless public/private key pair is generated on the host to
assist clients in identification of the host. When a client connects to the SSH server, the server’s
public key fingerprint is stored on the client’s machine in the known_hosts file (if it is the first
time a connection has been made), or compared with the key fingerprint from the last time
the connection was made. This allows ssh(1) to warn you of potential “man in the middle” or
similar “imposter” type attacks.

29

CHAPTER 2. SECURING THE OPERATING SYSTEM

However, difficulties can arise if a machine is upgraded or replaced and the “original” server
keys are also replaced; namely, clients may be unable to connect to your server because of the
change in keys, and the phone will ring frequently until everyone has been assured that your
server is trustworthy (or they quit using your server and become someone else’s customer).

Don’t Lose Your Keys!

SSH Server host keys live under /etc/ssh:

[root@myhost][/etc/ssh]
ls -l *key*
-rw----- 1 root wheel 668 Aug 7 2003 ssh_host_dsa_key
-rw-r-r- 1 root wheel 618 Aug 7 2003 ssh_host_dsa_key.pub
-rw----- 1 root wheel 543 Aug 7 2003 ssh_host_key
-rw-r-r- 1 root wheel 347 Aug 7 2003 ssh_host_key.pub
-rw----- 1 root wheel 887 Aug 7 2003 ssh_host_rsa_key
-rw-r-r- 1 root wheel 238 Aug 7 2003 ssh_host_rsa_key.pub

Six files, three key pairs, for RSA1, RSA2, and DSA. It may be a good idea to output the
above information to a file so you can verify permissions after the upgrade or system replace-
ment.

Examples

#ls -l /etc/ssh/*key* > /key_list

Store a list of the files as they are on the current machine, in your $HOME directory in the
file “key_list”.

#mkdir /serverkeys && sudo cp /etc/ssh/*key* /serverkeys/

Create a directory in my $HOME, and, if that is successful, copy the server’s key files to that
location.

After the upgrade or replacement (make sure and save your $HOME directory!!), copy the
keys back to /etc/ssh:

#sudo cp /serverkeys/*key* /etc/ssh

Then you can test to see if you messed things up with the wrong umask (permissions). You
might try this little trick with diff(1) - (using “-” as a file argument to diff means “read from
standard input”):

#ls -l /etc/ssh/*key* | diff - /key_list

If diff produces no output, you’re finished. Of course, it probably won’t, because the dates
will change. So, compare the permissions bits on the two listings visually, and you should be
good to go (Note : sshd won’t start if the permissions are wrong on the key files, so this step is
pretty important ;-)

30

2.6. RECOGNIZE ALTERNATE AUTHENTICATION MECHANISMS

Practice Exercises

More information

/etc/ssh/ssh_host_key

2.6 Recognize alternate authentication mechanisms

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand basic authentication theory and be aware that providing a username and password
is only one way to authenticate on BSD systems. Have a basic understanding of PAM and
know it is available on Dragonfly, FreeBSD and NetBSD 3.x. Also understand basic theory
regarding Kerberos, OTP and RADIUS. (Note: The BSDA candidate is not expected to know
how to configure an alternate authentication mechanism.)

Introduction

Examples

Practice Exercises

More information

2.7 Recognize alternate authorization schemes

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Admins should understand basic authorization theory and how MAC and ACLs extend the
features provided by the standard Unix permissions.

Introduction

TODO: is this section needed? is “mandatory” controls introduced elsewhere?
See section 3.5 for more information on ACLs, including ACL attributes.
Note that standard Unix permissions can also be extended by using file flags as covered in

section 3.13 .

31

CHAPTER 2. SECURING THE OPERATING SYSTEM

Examples

Practice Exercises

More information

mac(4) and acl(3) on FreeBSD; systrace(1) on NetBSD and OpenBSD

2.8 Recognize BSD firewalls and rulesets

Author: name ?? ??
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??

Concept

Each BSD comes with at least one built-in firewall. Recognize which firewalls are available on
each BSD and which commands are used to view each firewall’s ruleset.

Introduction

Each BSD comes with at least one built-in firewall. NetBSD provides IP Filter (IPF) and PF
(from OpenBSD). FreeBSD has its own IPFW, IP Filter, and PF. OpenBSD includes is own PF.
And DragonFly has IPFW, IP Filter, and PF.

IP Filter (IPF)

TODO: write two or three sentences just to summarize it TODO: show one or two examples
how to detect if it is available and if it is enabled TODO: point to default startup script for en-
abling TODO: point to location of default configurations TODO: point to included documen-
tation and examples TODO: show how to turn on and turn off (and mention issues with that)
TODO: show how to view loaded ruleset TODO: show a very brief example (three rules/lines)
and use same functionality for all three firewalls here

IPFW

TODO: write two or three sentences just to summarize it TODO: show one or two examples
how to detect if it is available and if it is enabled TODO: point to default startup script for en-
abling TODO: point to location of default configurations TODO: point to included documen-
tation and examples TODO: show how to turn on and turn off (and mention issues with that)
TODO: show how to view loaded ruleset TODO: show a very brief example (three rules/lines)
and use same functionality for all three firewalls here

32

2.9. RECOGNIZE THE BSD UTILITIES THAT SHAPE TRAFFIC OR CONTROL
BANDWIDTH

PF

TODO: write two or three sentences just to summarize it TODO: show one or two examples
how to detect if it is available and if it is enabled TODO: point to default startup script for en-
abling TODO: point to location of default configurations TODO: point to included documen-
tation and examples TODO: show how to turn on and turn off (and mention issues with that)
TODO: show how to view loaded ruleset TODO: show a very brief example (three rules/lines)
and use same functionality for all three firewalls here

Practice Exercises

More information

ipfw(8), ipf(8), ipfstat(8), pf(4), pfctl(8) and firewall(7)

2.9 Recognize the BSD utilities that shape traffic or control
bandwidth

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand when it is advantageous to create policies controlling the amount of bandwidth
available to specified services.

TODO: can someone answer the above?
In addition, recognize the utilities available on BSD systems to create bandwidth policies.
TODO: do not teach how to use these tools; just say what is available, basically what they

do and where to get more information. TODO: because this is beyond BSDA “associate”
Note: This topic only briefly introduces the technologies, but doesn’t cover implementation.

Introduction

The technologies available on BSD systems to create bandwidth policies include:

• dummynet for FreeBSD and DragonFly

• ALTQ for NetBSD, FreeBSD, OpenBSD and DragonFly

The dummynet facility can manage bandwidth and shape traffic (plus emulate delays and
packet losses). The “ipfw” tool is used to configure the dummynet bandwidth and queueing
policies. Details about dummynet can be found in the dummynet(4) and ipfw(8) manual pages.

TODO: dummynet not in default kernels? loadable vi kernel module?
TODO: how could a novice admin detect if dummynet is in use?

33

CHAPTER 2. SECURING THE OPERATING SYSTEM

The ALTQ framework provides queueing of packets with disciplines such as Class Based
Queuing, Random Early Detection, Random Early Drop, Hierarchical Packet Scheduler, and
Priority Queuing. This can be configured using the “pfctl” tool. On NetBSD, the “altqd”
daemon can also be used to configure ALTQ.

TODO: point to documentation
TODO: distinguish better about altqd on NetBSD?
TODO: how could a novice detect if altq is in use with pfctl? with altqstat?
TODO: altq man pages say “output queues” but RED is for input too. Is altq for in and out?

Examples

Practice Exercises

More information

ipfw(8), altq(4), dummynet(4), altq(9), altqd(8), altq.conf(5)

2.10 Recognize BSD mechanisms for encrypting devices

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware that it is possible to encrypt devices on BSD systems and which utilities are available
on each BSD system.

TODO: do not go into detail on this advanced topic ... just briefly tell what is available and
give a very brief usage example if you want –reed

Introduction

Examples

Practice Exercises

More information

gbde(4) and gbde(8) on FreeBSD; cgd(4) on NetBSD; vnd(4) on OpenBSD

2.11 Recognize methods for verifying the validity of binaries

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

34

2.12. RECOGNIZE THE BSD METHODS FOR RESTRAINING A SERVICE

Concept

Recognize the utility of file integrity utilities such as tripwire. Recognize the built-in checks
provided on some of the BSDs.

Introduction

Examples

Practice Exercises

More information

security(7) or (8); security.conf(5); veriexecctl(8)

2.12 Recognize the BSD methods for restraining a service

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Recognize the advantages of restraining a service on an Internet facing system and which
utilities are available to do so on each of the BSDs.

TODO: this does not teach how to setup jail or xen or systrace. Just quickly explain what is
available.

TODO: show quick example or explanation of setting up chroot and using chroot

Introduction

Examples

Practice Exercises

More information

chroot(8); jail(8); systrace(1); the third-party Xen application

2.13 Modify the system banner

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

35

CHAPTER 2. SECURING THE OPERATING SYSTEM

Concept

Be aware of the banner(s) that may be seen depending on how a user accesses a system and
which files are used to configure each banner.

Introduction

Various banners and welcome messages are available to introduce a BSD system and to possi-
bly share news, system policies, or important announcements. The most common message is
the /etc/motd file. For normal local or remote logins, this plain text file is displayed. While it
is called the “message of the day,” this message is not always updated every day and is only
displayed on logins, so may not be read everyday. The administrator for the system modifies
this file.

TODO: FreeBSD and NetBSD’s login.conf allows definition of a “welcome” capability to
override this when logging in via sshd or login(8).

The gettytab defines an initial banner message (im) displayed before the console login
prompt. It defaults to:

\r\n%s/%m (%h) (%t)\r\n\r\n

The format is described in the gettytab(5) manual page.

• \r\n carriage return and line feed

• %s name of operating system

• %m type of machine, such as TODO

• %h the hostname

• %t the tty name, such as TODO

The SSH server can be configured to send a banner message before the authentication. And
it also can be configured to disable displaying the “message of the day”. TODO

TODO: telnetd uses standard login??

Examples

Practice Exercises

1. View your /etc/motd file.

More information

motd(5), login.conf(5), gettytab(5), sshd_config(5)

36

3 Files, Filesystems and Disks

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

The usefulness of any computing system is related to the accessibility of the data stored on
it. An admin is expected to thoroughly understand how to make data available both locally
and remotely and how to use permissions to ensure authorized users can access that data. Be
experienced in backing up data and in resolving common disk issues.

• 3.1

• 3.2

• 3.3

• 3.4

• 3.5

• 3.5

• 3.7

• 3.8

• 3.9

• 3.10

• 3.11

• 3.12

• 3.13

• 3.14

3.1 Mount or unmount local filesystems

Author: ?? andreas dot kuehl at clicktivities dot net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

37

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

Concept

Be familiar with all aspects of mounting and unmounting local filesystems including: how to
mount/umount a specified filesystem, how to mount all filesystems, configuring filesystems to
be mounted at boot, passing options to mount(1), and resolving mount(1) errors.

Introduction

During system boot the file systems from disk or nfs or other network protocols are mounted,
are available during the operation time and are unmounted at shutdown time. In normal opera-
tion, no one cares about file systems, mountpoints and other stuff. They are just there. It’s your
job to handle all the other times :-)

What hw have to cover:

1. mount

2. unmount

3. /dev/ad0s1a

4. hint to fsck

5. /etc/exports

6. mount -a

7. errors at mount -a

8. /etc/fstab ...

Examples

Mount partition e on the first slice of the primary master IDE hard disk at /usr :

mount /dev/ad0s1e /usr

Same thing, SCSI disk

mount /dev/da0s1e /usr

Mount all filesystems listed in /etc/fstab :

mount -a

Note that filesystems marked “noauto” in /etc/fstab would not be mounted by this command.
Mount optical media in the CD-ROM drive as listed in /etc/fstab :

mount /cdrom

Mount a floppy disk to /mnt :

mount -t msdos /dev/fd0 /mnt

38

3.2. CONFIGURE DATA TO BE AVAILABLE THROUGH NFS

Mount a FAT32 formatted USB “key” on /mnt :

mount_msdosfs /dev/da0s1 /mnt

Note that USB devices are assigned SCSI device names; if usbd(8) is running, the system
log file /var/log/messages should show the name of the device within a few seconds after the
device is inserted. Also, note that “mount -t msdos” and “mount_msdosfs” actually accomplish
the same operation.

Practice Exercises

More information

mount(8), umount(8), fstab(5)

3.2 Configure data to be available through NFS

Author: name ?? ??
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??

Concept

Be aware of the utilities associated with NFS and the security risks associated with allowing
RPC through a firewall. In addition, be able to configure a NFS server or client according to a
set of requirements on the data to be made available.

Introduction

Examples

Practice Exercises

More information

exports(5), nfsd(8), mountd(8), rpcbind(8) or portmap(8), rpc.lockd(8), rpc.statd(8), rc.conf(5)
and mount_nfs(8)

3.3 Determine which filesystems are currently mounted and
which will be mounted at system boot

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

39

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

Concept

Be able to determine which filesystems are currently mounted and which will be mounted at
boot time.

Introduction

The UNIX paradigm “everything is a file” means that almost any device can be mounted to
almost any location on the filesystem hierarchy.

To see all devices currently mounted on the filesystem, call mount(8) with no arguments.
At boot time, init mounts devices as shown in the file /etc/fstab, which may be edited by the
superuser to add or remove additional boot-time mounts and change mount parameters.

Examples

$ cat /etc/fstab
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1e /usr ufs rw 2 2
/dev/ad0s1d /var ufs rw 2 2
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

A typical ’fstab’ from a FreeBSD 6.x machine. Note that the “noauto” option for the entry
/dev/acd0 means that init(8) will not mount the cdrom during bootup, but the CD can be
mounted with “mount /cdrom” by a user with the appropriate privileges. Here is the output of
mount(8) for the same system:

$mount
/dev/ad0s1a on / (ufs, local, soft-updates)
devfs on /dev (devfs, local)
/dev/ad0s1e on /usr (ufs, NFS exported, local, soft-updates)
/dev/ad0s1d on /var (ufs, local, soft-updates)
devfs on /var/named/dev (devfs, local)

Mount(8) here gives a couple of details not visible in the system ’fstab’ — one is the exis-
tence of devfs(5), the “device file system”, which occurs twice here because this system runs
named(8) in a “sandbox” or chrooted environment. The other is the fact that /usr is exported as
a Network File System. In this case, you might wish to call showmount(8) to see if anyone is
connected to your exported file system before you umount(8) it or call shutdown(8). (Network
mounts are introduced in section 3.2 .)

The ’df’ tool can also show mounted filesystems, for example:

$ df -m

Filesystem 1M-blocks Used Avail Capacity Mounted on
/dev/wd0a 1008 23 934 2% /

40

3.4. DETERMINE DISK CAPACITY AND WHICH FILES ARE CONSUMING THE
MOST DISK SPACE

/dev/wd0f 4032 10 3820 0% /var
/dev/wd0e 15121 1541 12823 10% /usr
/dev/wd0g 10081 500 9076 5% /home
kernfs 0 0 0 100% /kern

The -t switch for df can be used to specify or exclude some filesystems. To exclude, prefix
the filesystem name with “no”, such as “noffs” or “noprocfs”. For example, on DragonFly and
on NetBSD:

$ df -t nfs
Filesystem 1K-blocks Used Avail Capacity Mounted on
office:/pub 20644846 858522 18134738 5% /pub
$ df -t noffs
Filesystem 512-blocks Used Avail Capacity Mounted on
kernfs 2 2 0 100% /kern

More details on using df are covered in section 3.4 .

Practice Exercises

1. Compare the output of mount(8) on your system(s) with the output shown above.

2. If the machine isn’t “mission-critical”, try removing the “noauto” option above and re-
booting the system with the optical drive empty. What do you predict will happen? What
actually happens? (Note that you might want to have a backup copy of /etc/fstab stored
somewhere in the root of your filesystem if you try this.)

More information

mount(1), df(1), fstab(5)

3.4 Determine disk capacity and which files are consuming
the most disk space

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

• Be able to combine common Unix command line utilities to quickly determine which
files are consuming the most disk space.

41

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

Introduction

As disk sizes have increased over the years, so have the amount of data that we seem to want to
keep on them. At one time or another, you may be faced with the “too much data/not enough
space” problem. How can you quickly find the “disk hogs”?

Use the tools!

The BSD systems are full of tools that can assist with this problem, including:

• df - “disk free”

• du - “disk usage”

• find - “walk a file hierarchy”

If you’re using NetBSD, you can also get a “df” type reading from systat(1). And with any
BSD variant, using common “Unix-fu” (in particular, find and shell pipes), these commands
can quickly produce useful information about disk usage.

df and du

For a quick summary of disk space, simply call df . Using “-c” with df provides an “overall
total”; using “-h” with either df or du produces “human readable” output: that is, calculated
into K, M, G (kilobytes, megabytes, gigabyes), etc., instead of “blocks” as indicated by the
environment variable $BLOCKSIZE.

Unlike df, you probably don’t want to simply call du . Without arguments, du lists the size
of every file and subdirectory (and its files and subof your CWD, roughly in the order of inodes
— if you happen to be in “/”, you’d be a long time reading the output of “du”. Usually it’s
better to use du(1) with “-s”, possibly even with a specific file or file “glob” argument, or with
“-h” and maybe “-c”, and pipe the output through sort(1); look for a rather convoluted (yet
effective) example below.

du(1) can also read the sizes of files listed to its standard input, which makes find(1) a fairly
useful “frontend” to du(1) on occasion (but see the section on find below before you scratch
your head too hard on this).

Note : under certain conditions, df and du may disagree somewhat about the amount of free
space on a filesystem. Generally, this occurs when a program is holding an open file descriptor
to a file that has been unlinked; in such a case, du(1) wouldn’t count the file’s size, but the
blocks are still unavailable as “free blocks” (df=”disk free”, remember?) In such cases, you
can use fstat(1) to see currently open files.

find(1) and the “size” primary

The complete use of find(1) is beyond the scope of this section; please see 7.7 for complete
information. However, using the “size” primary and an expression representing a given filesize,
you can quickly produce a list of “disk hogs”. See the Examples below.

42

3.4. DETERMINE DISK CAPACITY AND WHICH FILES ARE CONSUMING THE
MOST DISK SPACE

Examples

Are any partitions nearing “full”?

$ df
/dev/ad0s1a 1978 977 842 54% /
/dev/ad0s1e 67765 49502 12841 79% /usr
/dev/ad0s1d 3962 2182 1463 60% /var

Display all the *.mp3 files in my homedir, and their sizes with a total:

$ du -sc *mp3 $HOME

List all files in the current directory, in order of size (almost):

$ du -h | sort -n | more

Here’s a pretty wild set of pipes for “du”, showing the largest disk hogs (unless files are
>999MB - if so change “M” to “G” in the regular expression); to see the smallest files, use
“head” rather than “tail”, or for a complete listing pipe it to $PAGER instead of either. The
“-n” option to sort(1) ensures that the filesizes are in numeric rather than alphabetical order:

[root@server][/usr/src]
du -hc * | sort -n | grep “[0-9]M” | tail

26M crypto
27M contrib/binutils
28M release
40M sys/dev
47M contrib/gcc
105M sys
204M contrib
458M total

But this brings us to the relative power of find(1). A similar report could be produced like
this (“find all files in the cwd greater than approximately 900MB in size”):

find . -size +940000000c

The main difference between this statement’s output and that of the “piped arrangement”
above is that find doesn’t report the actual sizes and the list isn’t “sorted”. Note that if you’re
using FreeBSD, you can use “[KMGTP]” with the size designation, thus: “find . -size +900M”.

Practice Exercises

1. Use “df” to see if your hard drives are nearing “full”.

2. Use “find” to find out whom in /home/ is the biggest “disk hog”. (Optional: Use grep to
see if any of these files are “mp3”s).

3. Use “du” along with sort(1) and grep(1) to produce lists of files by size.

43

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

More information

du(1), df(1), find(1), sort(1), and, for NetBSD systat(1)

3.5 Create and view symbolic or hard links

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Know the difference between symbolic and hard links as well as how to create, view and
remove both types of links. In addition, be able to temporarily resolve a low disk space issue
using a symbolic link.

Introduction

Examples

Practice Exercises

More information

ln(1), ls(1), rm(1), stat(1)

3.6 View ACLs

Author: Grzegorz CzapliÅski gregory at systemics dot pl FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to determine if a FreeBSD system is using ACLs, and if so, on which filesystems. In
addition, be able to view a file’s ACL on a FreeBSD system.

Introduction

ACLs provide an extended set of permissions for a file or directory. These permissions can
be used in addition to the conventional UNIX permissions for files and directories. Standard
UNIX file permissions (covered in section 3.7) provide read, write and execute access to three
user classes:

• file owner

44

3.6. VIEW ACLS

• file group

• others

ACLs are used to provide greater data access control for each file or directory. They enable
you to define permissions for specific users and groups.

Every ACL has the following syntax:

[ACL tag]:[ACL qualifier]:[Access permissions]

ACL tag is a scope of the file permissions to the owner, group, others, specific users, specific
groups or ACL’s mask.

The ACL qualifier field describes the user or group associated with the ACL entry. It might
be UID or user’s name, GID or group’s name, or empty.

Access permissions are the effective permissions for [ACL tag] and are specified as:

• r - read

• w - write

• x - execute

Entry types:
u::perm permissions for the file owner g::perm permissions for the file group o::perm

permissions for the others u:UID:perm permissions for the specific user identified by UID
u:username:perm permissions for the specific user identified by username g:GID:perm
permissions for the specific group identified by GID g:groupname:perm permissions for the
specific group identified by groupname m::perm maximum effective permissions allowed for
specific users or groups.

The mask does not set the permissions for the file owner or others. It is used as a quick way to change effective permissions for all specific users or groups.

ACLs are part of UFS2 filesystem shipped with FreeBSD 5.0-RELEASE as an option or
FreeBSD 5.1-RELEASE as the default filesystem during the installation. To check which
filesystem you have on your system type:

dumpfs /tmp | head -1
magic 19540119 (UFS2) time Fri Aug 15 19:23:30 2003

You must have ACL support compiled into the kernel too.
Add:

options UFS_ACL #Support for access control lists

to your kernel config compile and install a new kernel according to the instructions in the
June 2003 Answerman column.

To enable ACLs on a partition, after newfs(1)’ing it issue the commands:

45

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

tunefs -a enable /dev/da1s1e
mount /dev/da1s1e /mountpoint
mount | grep acl
/dev/da1s1e on /mountpoint (ufs, local, soft-updates, acls)

This indicates that soft-updates and acls are enabled on the /dev/da1s1e partition mounted
under /mountpoint.

The other way to check if ACLs are enabled is to use tunefs(1) command:

tunefs -p /dev/da1s1e
tunefs: ACLs: (-a) enabled
tunefs: MAC multilabel: (-l) disabled
tunefs: soft updates: (-n) enabled
tunefs: maximum blocks per file in a cylinder group: (-e) 2048
tunefs: average file size: (-f) 16384
tunefs: average number of files in a directory: (-s) 64
tunefs: minimum percentage of free space: (-m) 8%
tunefs: optimization preference: (-o) time
tunefs: volume label: (-L)

Before I show some examples please read the manpage for getfacl(1). The commands and
their output below are separated by one empty line for clarity. On my test system I have a user
called acl and he belongs to wheel group. When you see touch(1) command in an example,
that means I recreated a file after it was removed.

Create an empty file:

% umask 027
% touch file.txt
% ls -l file.txt
-rw-r--- 1 acl wheel 0 Aug 5 22:35 file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
group::r-
other::--

The file.txt is a normal file without any ACL permissions set yet.
TODO: need to clean this part up (and others with setfacl) and just show your own possible

examples without using setfacl in this doc. TODO: it would be good for beginning admin to
know that setfacl exists and what it is, but according to the BSD Certification Group, TODO:
this doesn’t need to target modifying ACLs.

% ls -l file.txt
-rw-rw---+ 1 acl wheel 0 Aug 5 22:41 file.txt

The little “+” at the end of access rights column indicates that the file has ACL set.

46

3.6. VIEW ACLS

% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::r-
mask::rw-
other::--

This command shows that owner has read/write access, group has read access, and user
gregory has read/write access. I have to point now that the mask indicates the maximum per-
missions for user gregory.

If the command was (set the mask - “m::r”):
TODO: remove setfacl from this beginning article:

% setfacl -m u::rw,g::r,u:gregory:rw,m::r file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw- # effective: r-
group::r-
mask::r-
other::--

user gregory would have read/write access, but the mask would downgrade the effective
access rights to read only.

There is an “-M” switch that is used to set and modify the ACL entries. The information
about actual ACLs are kept in a file (in this example acls.txt).

% touch file.txt

Create acls.txt file which looks like:

% cat acls.txt
u:bin:rwx
% setfacl -M acls.txt file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:bin:rwx
group::r-
mask::rwx
other::--

47

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

In the last example ACL entry for user bin was specified in a file acls.txt. Recalculating an
ACL mask

The ACLs look as above (the last getfacl(1) command), issue a command:

% setfacl -m u::rw,g::r,u:bin:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:bin:rw-
user:gregory:rw-
group::r-
mask::rw-
other::--

Now, users gregory and bin have read/write access, and the mask has been “group” ACL
entries in the resulting ACL.

If the last command was:

% setfacl -n -m u::rw,g::r,u:bin:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:bin:rw- # effective: r-
user:gregory:rw- # effective: r-
group::r-
mask::r-
other::--

the mask would not get recalculated (switch -n). Effective rights for users gregory and bin
would be read only. Deleting an ACL

To delete an ACL entry for user bin do:

% setfacl -n -x u:bin:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw- # effective: r-
group::r-
mask::r-
other::--

The entry for user bin was deleted. If you want the mask not to get recalculated, remember
to use the “-n” switch. If you didn’t use it, the mask would be read/write now, effectively
changing permissions for user gregory to read/write.

48

3.6. VIEW ACLS

To remove permanently ACL from a file issue:

% setfacl -bn file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
group::r-
other::--
% ls -l file.txt
-rw-r--- 1 acl wheel 0 Aug 5 23:08 file.txt

Compare the above with that:

% setfacl -b file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
group::r-
mask::r-
other::--

In the next example, setfacl(1) command is able to change permissions for all user classes -
owner, group, others.

% umask 027
% touch file.txt
% ls -l file.txt
-rw-r--- 1 acl wheel 0 Aug 5 23:13 file.txt
% setfacl -m u::rw,g::r,o::r,u:gregory:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::r-
mask::rw-
other::r-
alphax% ls -l file.txt
-rw-rw-r-+ 1 acl wheel 0 Aug 5 23:12 file.txt

More interesting example:

% touch file.txt
% ls -l

49

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

total 0
-rw-r--- 1 acl wheel 0 Aug 5 23:24 file.txt
% chmod 660 file.txt
% ls -l
total 0
-rw-rw--- 1 acl wheel 0 Aug 5 23:24 file.txt
% setfacl -m u::rw,g::r,o::r,u:gregory:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::r-
mask::rw-
other::r-
% ls -l
total 2
-rw-rw-r-+ 1 acl wheel 0 Aug 5 23:25 file.txt
% chmod 644 file.txt
% ls -l
total 2
-rw-r-r-+ 1 acl wheel 0 Aug 5 23:25 file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw- # effective: r-
group::r-
mask::r-
other::r-

The last setfacl(1) command set the access rights as follows:

user::rw-
user:gregory:rw-
group::r-
mask::rw-
other::r-

Then I changed explicitly access rights with chmod(1) command:

% chmod 644 file.txt

and the access rights reapeared as:

user::rw-
user:gregory:rw- # effective: r-

50

3.6. VIEW ACLS

group::r-
mask::r-
other::r-

Note, the mask is closely associated with group access rights. Changing Unix access rights
with chmod(1), you also change the mask value.

Consider this scenario:

% touch file.txt
% setfacl -m u::rw,g::rw,o::r,u:gregory:rw file.txt
% ls -l file.txt
-rw-rw-r-+ 1 acl wheel 0 Aug 6 20:19 file.txt
% setfacl -m m::r file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw- # effective: r-
group::rw- # effective: r-
mask::r-
other::r-
% ls -l file.txt
-rw-r-r-+ 1 acl wheel 0 Aug 6 20:20 file.txt

Changing the mask value, does change group access rights.
If you see a file with a magic “+” at the end of access rights column, check it with

getfacl(1). Copying ACL entries

% touch file.txt
% setfacl -m u::rw,g::r,u:gregory:rw file.txt
% getfacl file.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::rw-
mask::rw-
other::r-
% getfacl file.txt | setfacl -b -n -M - file1.txt
% getfacl file.txt file1.txt
#file:file.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::rw-

51

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

mask::rw-
other::r-
#file:file1.txt
#owner:1009
#group:0
user::rw-
user:gregory:rw-
group::rw-
mask::rw-
other::r-

Creating default ACLs
Default ACL entries provide a way to propagate ACL information automatically to files and

directories. New files and directories inherit ACL information from their parent directory if
that parent has an ACL that contains default entries. You can set default ACL entries only on
directories.

Example:

% umask 027
% mkdir dir
% ls -l
total 2
drwxr-x-- 2 acl wheel 512 Aug 6 11:50 dir
% getfacl dir
#file:dir
#owner:1009
#group:0
user::rwx
group::r-x
other::--

Before you set any default ACL entries for users or groups, you must set default ACL entries
for owner, group, other, and ACL mask.

Consider this:

% setfacl -m u::rwx,m::rwx,g::rx,o::rx dir
% getfacl dir
#file:dir
#owner:1009
#group:0
user::rwx
group::r-x
mask::rwx
other::r-x
% setfacl -dm u:gregory:rwx,m::rwx dir
setfacl: acl_set_file() failed for dir: Invalid argument

The correct order is:

52

3.6. VIEW ACLS

% setfacl -dm u::rwx,m::rwx,g::rx,o::rx dir

1. Set default ACL entries for directory owner, group, others and the mask.

% getfacl -d dir #file:dir #owner:1009 #group:0 user::rwx group::r-x mask::rwx other::r-
x

To view default ACLs issue getfacl(1) with the “-d” switch.

% setfacl -dm u:gregory:rwx,m::rwx dir

1. Set default ALC entry for user gregory.

To see the effect of default ACLs on subdirectories issue the following commands:

% mkdir dir/subdir
% getfacl -d dir
#file:dir
#owner:1009
#group:0
user::rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x
% getfacl -d dir/subdir
#file:dir/subdir
#owner:1009
#group:0
user::rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x

The subdir directory successfully inherited default ACL entries from its parent.
Suppose, you want to set default ACL entries for additional user bin:

% setfacl -dm u:bin:rwx,m::rwx dir
% getfacl -d dir
#file:dir
#owner:1009
#group:0
user::rwx
user:bin:rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x

53

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

% getfacl -d dir/subdir
#file:dir/subdir
#owner:1009
#group:0
user::rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x

That new default ACL entries for addtional user bin are not visible on dir/subdir as the
directory was created before the ACL entry for bin was set.

To see the effect of default ACLs on files, create a file beneath the dir directory:

% touch dir/file.txt
% ls -l dir/file.txt
-rw-r---+ 1 acl wheel 0 Aug 6 12:14 dir/file.txt
% getfacl dir/file.txt
#file:dir/file.txt
#owner:1009
#group:0
user::rw-
user:bin:rwx # effective: r-
user:gregory:rwx # effective: r-
group::r-x # effective: r-
mask::r-
other::--

The setfacl(1) manual states: “Currently only directories may have default ACL’s. Deleting
default ACLs

To delete default ACLs on directories, use setfacl(1) with the “-k” switch:

% setfacl -k dir
% getfacl -d dir
#file:dir
#owner:1009
#group:0
% getfacl dir
#file:dir
#owner:1009
#group:0
user::rwx
group::r-x
other::--

To delete a default ACL entry for user bin do:

% mkdir dir
% setfacl -dm u::rwx,m::rwx,g::rx,o::rx dir

54

3.6. VIEW ACLS

% setfacl -dm u:gregory:rwx,u:bin:rwx,m::rwx dir
% getfacl -d dir
#file:dir
#owner:1009
#group:0
user::rwx
user:bin:rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x

Create acls.txt file which looks like:

% cat acls.txt
u:bin:rwx
% setfacl -dX acls.txt dir
alphax% getfacl -d dir
#file:dir
#owner:1009
#group:0
user::rwx
user:gregory:rwx
group::r-x
mask::rwx
other::r-x

or simply type:

% setfacl -d -x u:bin:rwx dir

Things to remember
setfacl(1) always recalculates the ACL mask to allow maximum effective permissions for

every ACL entry, unless the “-n” switch is used.
If you use the chmod(1) command to change the file group owner permissions on a file

with ACL entries, both the file group owner permissions and the ACL mask are changed to
the new permissions. Be aware that the new ACL mask permissions may change the effective
permissions for additional users and groups who have ACL entries on the file.

Examples

Practice Exercises

More information

mount(8), ls(1), getfacl(1)

55

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

3.7 View file permissions and modify them using either
symbolic or octal mode

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

An administrator is expected to have a thorough understanding of traditional Unix permissions
including: how to view and modify permissions (i.e. “mode bits”), why the sticky bit is im-
portant on /tmp and other shared directories, recognizing and using the SUID and SGID bits,
and the difference between symbolic and octal mode. In addition, understand that a shell set-
ting determines the default file and directory permissions and, given a umask value, be able to
determine the default permission set.

Introduction

File ownerships and mode bits are the single most important file system security feature in unix
systems. Each file and directory has three attributes attached:

• User ID (uid)

• Group ID (gid)

• File mode bits

User and group IDs are simple numeric identifiers taken from /etc/passwd and /etc/group (but
it’s perfectly valid, though not useful, to use a uid or gid not present in the system). File mode
bits describe what permissions the user and the members of this group have on a particular file.
In addition to those, there are special additional bits describing permissions all other users on
the system have. The set of permissions is:

• r : read (user can read the file, or list a directory)

• w : write (user can write to the file, or create entries in the directory)

• x : execute (user can execute the file, or make the directory his current working directory)

Since the permissions form a bitmask, each has it’s numerical value. To make using numer-
ical values of mode bits easier, they are usually written in octal notation (hexadecimal is not
used because the number of mode bits is low enough):

• r : 04

• w : 02

• x : 01

56

3.8. MODIFY A FILE’S OWNER OR GROUP

Each of the above numbers is prefixed with 0 because that’s how they are distinguished from
decimal and hexadecimal numbers. To make a complex permissions these numbers are added
together. For example, to form a rw permission (reading and writing is allowed), the correct
number is 04+02=06.

To specify a compound permission which describes all mode bits for user, group and others,
three digits are used (four with the 0 prefix). The first digit describes permission of the uid
user, the second of the users in gid group and the third those of all other users. A common
permission is 0644, which allows the owner to read and write the file, and enables all other
users to just read the file.

The command to set mode bits is chmod.
TODO: mention discretionary control

Examples

Practice Exercises

More information

ls(1), chmod(1), umask(1) or umask(2)

3.8 Modify a file’s owner or group

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to modify a file’s ownership as required. In addition, be aware of the importance of
verifying one’s own identity before creating files.

Introduction

A file’s ownership can be changed by using the chown and chgrp tools. The change ownership
tool can be used to change a file’s user ID by using a username or user ID as an argument. A
filename (or filenames) is the final argument.

Obviously changing a file’s ownership can affect who can access to that file; thus the su(1)
substitute user identity tool, can be used to gain access to file, which might otherwise be pre-
vented due to the file’s ownership.

The following example shows the current ownership of a file and then changes it to another
user (by using a symbolic name and not a numeric ID):

$ ls -l math2.pl
-rwxr-xr-x 1 reed wheel 734 Feb 14 2006 math2.pl
$ chown austin math2.pl

57

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

$ ls -l math2.pl
-rwxr-xr-x 1 austin wheel 734 Feb 14 2006 math2.pl

The user ID can only be changed by the superuser (root), because a normal user should not
be able to hide their data or bypass file system quotas by changing ownership. (TODO: any
other reasons?) A file’s group ID can be changed by any user to a group that they are a member
of. (See section 4.9 about group membership.)

The chown utility can also change the file’s group ID by prefixing a group name or group ID
with a colon (:).

TODO: show example using numeric ID instead of symbolic name and ls -l -n
TODO: show example of using chown to change group
TODO: -R switch
TODO: point to section about file ownership attributes
TODO: document chgrp and show example
TODO: from concept” “In addition, be aware of the importance of verifying one’s own

identity before creating files.”
TODO: after mentioning -R, mention mtree can be used to reset file onwerships based on a

specification. show brief example maybe? or point to other section?

Examples

Practice Exercises

More information

chown(8), chgrp(1); su(1), mtree(8)

3.9 Backup and restore a specified set of files and
directories to local disk or tape

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Admins should have experience using common Unix command line backup utilities. In addi-
tion, be able to recognize the device names for tape devices on BSD systems.

Introduction

The common command-line backup utilities are tar, cpio, pax, cp, dd, and dump/restore. (De-
tails on using the dd, dump, and restore utilities are covered in the following section 3.10 .)

TODO: explain differences and similarities between tools.
TODO: basic usage of tar with examples

58

3.10. BACKUP AND RESTORE A FILE SYSTEM

TODO: basic usage of cpio with examples
TODO: basic usage of pax with examples
TODO: basic usage of using cp for backups with examples
Also the cpdup program is included with DragonFly and is available via NetBSD pkgsrc and

FreeBSD ports packages collections (TODO: not in openbsd – anyone want to package it?)
TODO: if there is room, quickly list other third-party backup tools (but not examples or

usage details)?
Common device names for tape drivers include: st, the SCSI and ATAPI tape driver; sa, the

SCSI Sequential Access device driver.
Note it is recommended that the raw interface (not block) is used, such as /dev/rst0. (TODO:

maybe the recommendation is not applicable for FreeBSD or other??) (TODO: mention no-
rewind like nrst0 or nsa0? , eject on close like erst0 or esa0??)

Examples

Practice Exercises

More information

tar(1), cpio(1), pax(1), cp(1), cpdup(1)

3.10 Backup and restore a file system

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Recognize the utilities used to backup an entire filesystem and the various dump(1) levels.

Introduction

Type “data loss statistics” into a search engine and you will receive a wide variety of results.
Here are some current claims:

• “6% of all PCs will suffer an episode of data loss in any given year”

• “U.S. businesses loose [sic] over $12 billion per year because of data loss.”

• “60% of companies that lose their data close down within 6 months of the disaster.”

It is difficult to easily verify these claims, one thing is certain: if your system’s data is lost,
you can find yourself in a lot of trouble. Perhaps you will have to spend extra time restoring
lost configuration files and data (if it is available!) You may have to pay significant overtime to
data entry personnel to restore a database. Your company could be adversely affected ... you
might lose your employer’s trust, or even your job.

59

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

One thing is fairly certain, even if we “manufacture” the claim: you can be sure that anyone
who loses data and has a backup of that data is much happier that anyone who loses data and
has no backup. And yet, talk to a sampling of small-to-medium businesspeople - many of them
will hang their heads in shame when backups are discussed.

A complete “disaster recovery plan” is beyond the scope of this book, or your responsibility
as a junior sysadmin. But you should definitely know how to backup and restore file systems
... a critical part of any recovery plan.

Various Options for Backup

There are many options for data backup - just as there are many companies who put statistics
about data loss on their websites. You might:

• cp(1) or scp(1) or cpio(1) everything to another location

• burn data to an optical medium

• use dd(1) to “clone” a filesystem

• backup important files to floppy drive (well not MUCH data - many people now use a
flash memory device instead.)

• Use a fine 3rd party program (AMANDA, Veritas, Bacula, rsync and others)

However, the canonical, reliable, quick, and portable (available on every BSD system)
backup program is dump(8). Its “partner” is restore(8). Dump was designed to backup UNIX
and UNIX-like systems to tape drive quickly and efficiently. Dump(8) is fast, writes to a va-
riety of media, works on live filesystems, does incremental backups, already know tons about
your filesystem(s), and has a host of other options to make it work in almost every situation.

I’m not trying to tell you that you can’t use other programs for your backups, but I am telling
you that for this book, we’re going to use dump(8). Make backups regularly and often! You
will someday be very glad that you did.

About dump(8)

For the full “dump” on dump(8), see the manpage. Here are some things your should remember
about dump(8):

• Dump has ten “levels” of backup (0-9).

– A level zero dump (’dump -0’) will backup all files on a filesystem.
– A higher level dump will only backup files changed since the last dump

of a lower level.
– Level zero is the default.

• Unless a filesystem is unmounted or mounted read-only, you should tell dump that the
filesystem is live (’-L’). Dump will then make a snapshot of the filesystem and dump the
snapshot (so that any activity on the drive doesn’t break the “dump”).

60

3.10. BACKUP AND RESTORE A FILE SYSTEM

• You must specify which filesystem you want dumped, either by its mount-point name
(e.g. “/usr”), or by its special node name (e.g. “/dev/ad1s1a”).

• Finally, by default dump(8) writes to a tape drive (/dev/sa0). By using the ’-f’ option to
dump, you may have dump write its output to another file, a special device, or even the
standard output.

For information on dump’s other options, including tape size and density specifications,
blocksize for the dump, auto-sizing of output, operator notifications, estimation of tape re-
quirements, manipulation of the dump date data and other features as well as environment
variables that affect dump, see the dump(8) manpage.

About restore(8)

Restore(8) is used to turn a “dump” back into usable data. The general format of the restore
command is as follows:

restore [-flag] [-options]

To rebuild a file system, the “-r” option is generally used.
Restore is generally used on a “pristine” file system (one that has been recently ’formatted’

with newfs(8)), and a level zero dump must be restored prior to any incremental dumps. Change
to the target directory before beginning the restore procedure.

Note that this is a rather abbreviated discussion of dump(8) and restore(8); refer to their
manual pages and the examples below for more information. Finally, be advised that you
should be running as root to dump and restore entire filesystems.

dd(1), cp(1) and other alternatives

dd(1) is a simple program to copy from standard input to standard output. cp(1) is used fre-
quently by almost anyone who uses a BSD system. Because of the familiarity and relative ease
of use of some of these programs, some people may use them as backup tools. It’s really up to
the primary system administrator to decide what to use.

Examples

Dump a mounted /usr to primary tape drive:

dump -L /usr

Dump /var to a file named “var.dmp”:

dump -L /var -f /backup/var.dmp

Restore from tape (/dev/sa0) to a new filesystem on /mnt:

cd /mnt; restore -rf /dev/sa0

Assume “/newusr” is a new/clean filesystem with appropriate space; here’s how to restore a
dump file from /backup/usr.dmp:

61

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

cd /newusr; restore -ruf /backup/usr.dmp

Here’s a simple script using dump(8) piped to restore(8) as a “quick and dirty” backup
solution in a machine with multiple drives. We have a root partition, /var and /usr, and 3
same-sized “bak” (backup) partitions on another disk:

#!/bin/sh
/bin/chflags -R noschg /rootbak/* /varbak/* /usrbak/* **
/bin/rm -rf /rootbak/* /varbak/* /usrbak/* **
/sbin/dump -0 -a -L -u -f - / | (cd /rootbak ; /sbin/restore -ruf -)**
/sbin/dump -0 -a -L -u -f - /var | (cd /varbak ; /sbin/restore -ruf -)**
/sbin/dump -0 -a -L -u -f - /usr | (cd /usrbak ; /sbin/restore -ruf -)**

Note that this isn’t a good substitute for a complete backup plan; it would only protect you
in the event that your first disk failed (and, if this is a problem, you should perhaps consider
a RAID setup, but that’s beyond our scope here) and not from theft of the system or natural
disasters, etc. If the “bak” directories were on a remote host, it might be more helpful, but
there could be performance and security issues over a network to a truly “remote” machine.
Ask your senior administrator to see the relevant portions of your company’s “disaster recovery
plan”. If he doesn’t get back to you soon, ask him how you might help in creating one!!!

Practice Exercises

More information

dump(8), restore(8), dd(1)

3.11 Determine the directory structure of a system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to quickly determine the directory layout used by BSD systems.

Introduction

For more details, read the hier(7) manual page which provides an outline of filesystem hierar-
chy. The man page lists common directories and with basic explanations. (TODO: FOOT-
NOTE: The NetBSD hier(7) manual also lists common files.)

62

3.12. MANUALLY RUN THE FILE SYSTEM CHECKER AND REPAIR TOOL

Examples

Practice Exercises

More information

hier(7)

3.12 Manually run the file system checker and repair tool

Author: ?? andreas dot kuehl at clicktivities dot net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware of the utilities available to check the consistency of a file system and to use them
under supervision.

Introduction

Under certain circumstances, the ffs/BSD file system can get corrupt or broken. It may be
better to say: The metainformation is corrupt/damaged. As a result of this, places where data
live could not be found or space is marked empty but old data is overwriten, when new data is
writen to the filesystem.

To prevent this, a file system is marked as unclean by certain mechanism in the operating
system and can not be mounted. During the booting process, unclean filesystems are checked
to rebuild the metainformation. Newer FreeBSDs (What about the other BSDs?) can mount
a file system and do a check in the background after the booting process.

Sometimes, the automatic check breaks and the system stops in the booting process. (Why?
)(What is single user mode?) Sometimes it is necessary to check a filesystem as you attach
a foreign disk by firewire or usb os scsi or something else.

The command for this operation is fsck. You can name the filesystem you want to check by
the devicename i.e. /dev/ad0s3h or, if the filessystem is in the /etc/fstab by the mountpoint.

During the check, fsck will ask you questions about what to do with data, that was found
in the filesystem without beeing accounted in the metainformation. It is save to answer with
“y”. (Really?) Recovered data will appear in a directory called lost+found at the base of
the filesystem. This could be examined to find lost data. Most times, and with Soft updats
switched on, almost always, you will find (parts of) already deleted files. (Really?)

Examples

fsck /dev/ad0s1a
will check first ide disk, partition 1, slice 1
fsck /usr
will check the filesystem, that is normally mounted at /usr

63

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

Practice Exercises

More information

fsck(8)

3.13 View and modify file flags

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand how file flags augment traditional Unix permissions and should recognize how to
view and modify the immutable, append-only and undelete flags.

Introduction

All current BSD system support an additional mechanism for fine-grained tuning of file security
called “file flags”. Though similar, this should not be confused with standard Unix file access
modes. The flags are:

• archived - The file may been archived

• opaque - The directory is opaque when viewed through a unionfs stack

• nodump - The file is to be ignored by backup utilities (like dump(1))

• sappend - The file can only be appended to (cannot change it’s contents) by any and all
users

• schange - The file can not be changed by and and all users

• sunlink - The file cannot be unlinked

• uappend - The file can only be appended to by its owner

• uchange - The file can only be changed by its owner

• uunlink - The file can only be unlinked by its owner

Some of these flags can only be (re)set by the super-user. This includes archived and all s*
flags.

A very important aspect of file flags is how they interact with securelevel. When securelevel
is set to 1 or above, flags cannot be modified even by root, thus enabling creation of fortified
system that cannot be damaged (deliberately or not) by the superuser. Note: Secure levels are
covered in ?? .

The ideas behind the security-related flags are:

64

3.14. MONITOR THE VIRTUAL MEMORY SYSTEM

• Log files should be append-only, thus preventing an attacker to mask his trail by modi-
fying them

• In a similar vein, log files should be prevented from deletion (i.e. unlink)

• System configuration files, SUID files, and other (at administrator’s discretion) must be
prevented from unauthorized change.

Downsides of this approach are that most administrative tasks must be done in single user
mode on the machine’s console, and that log rotation cannot work or is very tricky to do.

Some utilities have been modified to natively support file flags. For example, ls accepts -o
argument to display file flags for each file.

Examples

> chflags uappend important.log
(succeeds)
> ls -l important.log
-rw-r-r- 1 ivoras ivoras 172 Jan 20 00:42 important.log
> ls -lo important.log
-rw-r-r- 1 ivoras ivoras uappnd 172 Jan 20 00:42 important.log
> echo garbage > important.log
important.log: Operation not permitted.
> echo garbage >> important.log
(succeeds)
> mv important.log unimportant.log
important.log: Operation not permitted

Practice Exercises

1. Set sappend flag to /var/log/security and /var/log/userlog. Investigate what happens when
log rotation is attempted.

2. List files in /usr/bin and inspect their flags - notice that some are marked schange (or
schg) by default.

3. Not all utilities understand BSD file flags - check your backup and file management
tools.

More information

ls(1), chflags(1)

3.14 Monitor the virtual memory system

Author: name ?? ??
Reviewer: name ?? ??

65

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

Reviewer: name ?? ??

Concept

The virtual memory subsystem may have an important impact on a system’s overall perfor-
mance. Be able to configure a swap device and review swap usage.

Introduction

TODO: define thrashing ?
TODO: mention NetBSD example?? UVM: pid 8808 (perl), uid 1000 killed: out of swap
TODO: show examples of swap in fstab
TODO: mention start up scripts for enabling swap devices and files and basic setup
TODO: show examples on FreeBSD and test this; is this the preferred beginner way?

$ mdev=mdconfig -a -t vnode -f */path/to/swap/file*
$ swapon /dev/${mdev}

TODO: check this DragonFly example:

$
swapvnconfig -e vn0c /path/to/swap/file
swap

TODO: show examples of loading swap file on OpenBSD or NetBSD
On NetBSD and OpenBSD, the swapctl tool can be used to enable swap devices or files at

boot time. The following two commands are often done by default in NetBSD and OpenBSD
startup to enable all block-type swap devices and swap files listed in /etc/fstab (with “sw”),
respectively:

swapctl -A -t blk
swapctl -A -t noblk

NetBSD swap partition example in /etc/fstab:

/dev/wd0b none swap sw 0 0

TODO: show example of swap file in fstab
NetBSD and OpenBSD’s swapctl tool can be used to add, remove, prioritize, and list swap

files and devices.
TODO: this topic should not go into detail on virtual memory theory but just quickly explain

it
Some tools to quickly show physical and/or virtual memory utilization are pstat, systat, top,

and vmstat. On FreeBSD and DragonFly, the swapinfo tool is same as “pstat -s”.
The following example lists the enabled swap files and devices:

$ pstat -s -k
Device 1K-blocks Used Avail Capacity Priority
/dev/wd0b 170800 101004 69796 59% 0
/opt/swapfile 250000 129680 120320 52% 0
Total 420800 230684 190116 55%

66

3.14. MONITOR THE VIRTUAL MEMORY SYSTEM

TODO: should this mention that this is same as ’swapctl -l -k’ ??
TODO: mention that DragonFly has “Type” like “Interleaved”. I don’t see on FreeBSD.

TODO: while NetBSD and OpenBSD have “Priority”
TODO: should this mention unloading swap files? some systems may not support unloading

sawp devices??
TODO: show how to read top for virtual memory info
TODO: show how to use vmstat for virtual memory info
TODO: show how to use systat for virtual memory info

Examples

Practice Exercises

More information

pstat(8); systat(1); top(1); vmstat(8); swapctl(8); swapinfo(8)
TODO: add swapon(8) and fstab(5)

67

CHAPTER 3. FILES, FILESYSTEMS AND DISKS

68

4 Users and Accounts Management

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

All systems require at least one user account, and depending upon the role of the system, an
admin’s job duties may include supporting end-users in the maintenance of their accounts. Be
able to create user accounts, modify account settings, disable accounts, and reset passwords.
Know how to track account activity and determine which accounts are currently accessing a
system.

• 4.2

• 4.3

• 4.8

• 4.9

• 4.10

• 4.11

• 4.7

• 4.4

• 4.5

4.1 Protect authentication data

Author: ?? ceri@FreeBSD.org FreeBSD|OpenBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

To prevent attacks against system security with password cracking attacks, BSD systems keep
encrypted passwords visible to system processes only. An admin should have an understanding
of the location of the password database files and their proper permission sets.

69

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

Introduction

On a BSD system, user and group information is stored in a local set of password database
files, namely /etc/master.passwd .

The password database contains user information such as the user’s username, user id, real
name, shell, etc.. This information is used by a large number of user programs such as ls(1),
login(1), id(1) and so on, which need to determine and possibly display information about
one or many users – for example, running “ls -l” in /tmp may need to retrieve a number of
usernames. Of course, the password database must also contain important security related
information used by the system, such as the user’s encrypted password hash and information
required to support features such as password aging and account expiration.

In order to prevent access to the second set of information to processes that do not require it,
/etc/master.passwd is readable only by the root user, and a second file, /etc/passwd , is created
which contains only the first set of non-privileged information and is readable by all users.

ls -l /etc/master.passwd /etc/passwd
-rw----- 1 root wheel 3704 Jan 7 12:58 /etc/master.passwd
-rw-r-r- 1 root wheel 3028 Jan 7 12:58 /etc/passwd

On a heavily used system with a large number of users, repeatedly searching the flat files
/etc/passwd and /etc/master.passwd can take a long time and cause performance issues on
the system. Therefore, BSD systems maintain binary versions of these files for fast lookups.
/etc/pwd.db is the binary version of /etc/passwd, while /etc/spwd.db is the binary equivalent
of /etc/master.passwd. These files are created with the pwd_mkdb(8) command.

Since these files contain the same information as the non-binary versions, they must be
similarly protected.

ls -l /etc/spwd.db /etc/pwd.db
-rw-r-r- 1 root wheel 57344 Jan 7 12:58 /etc/pwd.db
-rw----- 1 root wheel 57344 Jan 7 12:58 /etc/spwd.db

Maintaining the Password Databases

Note that, as the name implies, /etc/master.passwd is considered the primary source for user
information on a BSD system. Therefore, if you make manual changes to /etc/passwd as
documentation for other systems may suggest, your changes can be lost. In order to ensure
the integrity of your password databases, only use system provided tools such as vipw(8) to
maintain them. See section 4.2 for information on adding and removing users and modifying
the databases.

TODO: make sure we don’t have redundant information between these sections. Also check
or point to ?? . Also maybe move the sections together in the book.

Practice Exercises

1. Look at the entries for the root user in /etc/master.passwd and /etc/passwd on your sys-
tem. Use the passwd(5) manual to determine which fields are not present in /etc/passwd

2. Rebuild the binary lookup databases on your system with “pwd_mkdb /etc/master.passwd”.
Note that the timestamps are updated on pwd.db and spwd.db.

70

4.2. CREATE, MODIFY AND REMOVE USER ACCOUNTS

More information

passwd(5), pw(8), pwd_mkdb(8), vipw(8)

4.2 Create, modify and remove user accounts

Author: name ?? ??
Reviewer: Sean Swayze swayze@pcsage.biz FreeBSD/OpenBSD
Reviewer: Alistair Crooks agc@NetBSD.org NetBSD

Concept

Managing user accounts is an important aspect of system administration. Be aware that the
account management utilities differ across BSD systems and should be comfortable using each
utility according to a set of requirements.

Introduction

TODO: maybe section 4.1 can cover vipw.
Details about the password database are covered in section 4.1 .
TODO: this section is BSD specific, so break it down briefly for pw, adduser, useradd, etc

per BSD flavor
TODO: point to section ?? about chsh, chpass, chfn which can do some of the same. TODO:

also section 4.8 is related. We need to put these four sections together in book

Examples

Practice Exercises

More information

vipw(8); pw(8), adduser(8), adduser.conf(5), useradd(8), userdel(8), rmuser(8), userinfo(8),
usermod(8), and user(8)

4.3 Create a system account

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand that many services require an account and that such accounts should not be avail-
able for logins.

71

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

Introduction

A system account is generally a user used for a specific purpose and associated with a specific
daemon. They are normal accounts with a UID, but usually differ for a few reasons:

• probably do not need a usable shell

• do not need a valid password (as no one would ever login using this account)

• might not have a standard home directory

A default install of a BSD system has several system accounts, for example:

root::0:0::0:0:Charlie &:/root:/bin/csh
daemon:*:1:1::0:0:Owner of many system processes:/root:/sbin/nologin
operator:*:2:5::0:0:System &:/:/sbin/nologin
bin:*:3:7::0:0:Binaries Commands and Source:/:/sbin/nologin
sshd:*:22:22::0:0:Secure Shell Daemon:/var/empty:/sbin/nologin
_pflogd:*:74:74::0:0:pflogd privsep:/var/empty:/sbin/nologin
nobody:*:32767:32767::0:0:Unprivileged user:/nonexistent:/sbin/nologin

TODO: put some hash in the root’s password field or maybe do not include “root” here
Notice that system accounts usually have an asterisk in the password field. No hash algo-

rithm can match this, so the password is disabled. Also the default shell for many system users
is commonly the nologin program.

TODO: explain purposes of these at least TODO: explain path to nologin differs or point
to section that talks about it? TODO: point to section that explains ampersand in gecos field
TODO: explain nobody

Other common system accounts include: uucp, www, toor, bind or named, proxy, and mail-
null or postfix. Installing packages may also include additional system accounts, such as cyrus,
gdm, and pgsql.

TODO: mention system groups also
TODO: mention dedicated accounts – such as users or groups for mail or source builds or

backup jobs, etc.

Examples

TODO: show example using useradd and pw to create a system user

Practice Exercises

1. Manually run nologin

More information

nologin(8); using a * in the password field of passwd(5)

72

4.4. CONTROL WHICH FILES ARE COPIED TO A NEW USER’S HOME DIRECTORY
DURING ACCOUNT CREATION

4.4 Control which files are copied to a new user’s home
directory during account creation

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems use a “skel” directory containing files which are copied over to a user’s home
directory when a user account is made. Be aware of the location of the skel directory on each
BSD, as well as how to override the copying of its contents during account creation.

Introduction

A number of files control a user’s environment; generally these are “sourced” at login to set
variables, aliases, shell prompts and other options, but others may hold information used in
processing mail or making remote connections. Generally these files (.login, .cshrc, .shrc,
.rhosts, .mailrc and maybe some others) are referred to as “dotfiles”.

As a system administrator, you may wish for your users to all have similar environments set
up when they log in — perhaps colorized file listings, customized mail or program aliases, their
own executable path, and so on. Rather than you teaching all your users how to set their own
environment in their dotfiles, or (perhaps worse) you editing all the users’ dotfiles yourself,
your BSD system has a “skeleton directory” where master copies of the dotfiles are stored. By
editing the master dotfiles in the “skel” directory, you can do the editing once and then have
these files copied to a new user’s $HOME directory during the user addition process.

Finding the Dotfiles!

The names and locations of the “dotfiles” vary somewhat in each branch of the BSD’s. For
FreeBSD and NetBSD, look in /usr/share/skel:

FreeBSD$ ls /usr/share/skel
dot.cshrc dot.login_conf dot.mailrc dot.rhosts
dot.login dot.mail_aliases dot.profile dot.shrc

OpenBSD stores “dotfiles” in /etc/dotfiles. Be careful, though; the fact that their dotfiles are
really dot files have confused a few people:

OpenBSD$ ls /etc/dotfiles
OpenBSD$

Oh no! A system without dotfiles? Try using “ls -a”:

OpenBSD$ ls -a /etc/dotfiles
. .. .cshrc .login .mailrc .profile .rhosts

73

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

Examples

Practice Exercises

More information

pw(8), adduser.conf(5), useradd(8) or adduser(8), and usermgmt.conf(5)

4.5 Change a password

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: Kevin D. Kinsey kdk@daleco.biz FreeBSD
Reviewer: name ?? ??

Concept

Be able to change your own password as well as the passwords of other users as required.

Introduction

Passwords help to establish trust; trust that you, as a computer user, are indeed “authorized
personnel”; trust that the computer you are “logging into” is indeed the machine that it is
supposed to be; trust that files that bear your username as “owner” were indeeed originally
created by you — trust is fairly important, don’t you agree?

Good system security demands that users’ passwords or passphrases be changed from time
to time, even regularly in many cases. The “root” account should be protected by a strong
password to ensure that “normal users” cannot cause problems with a multi-user machine by
inadvertently shutting down, unmounting devices in use, installing unapproved software, etc.

You need to know how to change your password, and, as a system administrator, change the
password of the “root” user, or another user in your system. For example, you might need to do
some “system recovery”, but the root password is lost (however, if you can boot in single-user
mode you can change root’s password). You might wish to change a user’s password because
they are afraid their original password has been compromised. You might wish to change your
password because you have a new “significant other” and you want to forget the old one’s
name. Good news! Although your reasons may vary, the procedure is the same! The program
passwd (1) has everything you need for this chore!

Examples

You can change root’s password only if you are logged in as the root user, or use su to substitute
root’s credentials for your own.

Running passwd with no arguments will allow you to change your password. Note that it is
often a good idea to make sure that you are indeed the user you think you are before
attempting to make a password change:

74

4.5. CHANGE A PASSWORD

$ id
uid=1001(someuser) gid=0(wheel) groups=0(wheel)
$ passwd
Changing local password for someuser
Old Password:
New Password:
Retype New Password:

To change root’s password, we must first get permission:

$ id
uid=1001(someuser) gid=0(wheel) groups=0(wheel)
$ su
Password:
id
uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)
passwd
Changing local password for root
New Password:
Retype New Password:

We first check our own identity; since we are “someuser” instead of the root user, we know
we must gain root’s credentials to change root’s password. We use su and type root’s current
password to gain root access.

We then use passwd without a second argument, to change the password for the current
user - in our example, root. But suppose we wish to change another user’s password:

id
uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)
passwd someotheruser
Changing local password for someotheruser
New Password:

It is not recommended to do this to your friends without consulting them first!

Practice Exercises

1. Change your password.

2. Change the root password.

3. Change the password of another user.

More information

passwd(1), vipw(8)

75

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

4.6 Change the encryption algorithm used to encrypt the
password database

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Given a screenshot of a password database, an admin should be able to recognize the encryption
algorithm in use and how to select another algorithm. Have a basic understanding of when to
use DES, MD5 and Blowfish.

Introduction

TODO: test and document on other BSD systems – as appropriate make this content not BSD
specific

On NetBSD, the passwd(1) command (covered in section TODO) can use an /etc/passwd.conf
configuration to choose the password algorithm. The format is ..TODO... The default is
“old” which is the common crypt(3) DES encryption scheme. TODO: passwd.c doesn’t call
pw_getconf() so I think it must use pam for this?

The following are examples of different results based on the same password.

• old but common crypt(3) DES: 7rpABVh3LoKjE

• MD5: 1FSh3ps5T$Etg/3eGiSBqdGahf29lIN1

• NetBSD newsalt: _Gl/.Sw2RBVnj01TI6Tc

• SHA1: $sha1$21773$uV7PTeux$I9oHnvwPZHMO0Nq6/WgyGV/tDJIH

• Blowfish: $2a$04$3/vwv4ibdVz2SUG3w.SRwOgI6kk7FUmmCVswZ/KUS9bngvgGEkqNq

As you can see, the new algorithms use a format that can be recognized by routines (like
TODO) so they know what to compare with. TODO: show this format

(Note while high rounds may improve security, it can be expensive – very slow to generate
hash.) TODO: reword this or better explain

Examples

Practice Exercises

More information

login.conf(5); auth.conf(5); passwd.conf(5); adduser.conf(5) and adduser(8)

76

4.7. CHANGE A USER’S DEFAULT SHELL

4.7 Change a user’s default shell

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Know the default shells for both user accounts and the superuser account for each BSD. In
addition, know how to change the default shell for each BSD operating system.

Introduction

BSD systems historically use the standard C shell (/bin/csh) as root’s login shell. OpenBSD
uses /bin/ksh for root’s shell.

TODO: should C shell be spelled out? Or called Csh? or csh?
If no shell is set (the 7th field in the passwd database is empty), then login and some other

programs will default to standard /bin/sh.
Many system users use /sbin/nologin as the default shell. This utility will simply exit after

outputting “This account is currently not available.” (Note: On FreeBSD, the nologin(8) utility
is located at /usr/sbin/nologin.)

The standard tool for changing the user’s login shell is chsh(1). (It is a link to chpass(1).)
Running the chsh utility will start up your preferred editor where the user can modify the
selected shell (and other user database information).

The chsh program is setuid root, so it runs with root’s privilege so it can modify the user
databases. TODO: should this setuid be noted here?

TODO: should this cover EDITOR or VISUAL here? Or point to which topic page?
TODO: what systems don’t default to vi for VISUAL or EDITOR??
The vipw tool can also be used to manually edit the master.passwd database and related user

databases. See section 4.1 for details.
TODO: show how to use chsh from command line without using editor. Do all BSDs support

that?
TODO: show how to use pw (FreeBSD and DragonFly) to set shell and show how to use

“usermod” (NetBSD and OpenBSD) for this. Or maybe not as is covered in another section.
TODO: point to section ?? and ’4.8 . Put these four sections next to each other in book

Examples

Practice Exercises

More information

vipw(8); chpass(1), chfn(1), chsh(1), pw(8), user(8)

77

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

4.8 Lock a user account or reset a locked user account

Author: name ?? ??
Reviewer: Jeremy C. Reed reed AT reedmedia DOT net FreeBSD/NetBSD/DragonFly
Reviewer: name ?? ??

Concept

Know how to recognize a locked account and how to remove the lock.

Introduction

Locking an account is commonly accomplished by modifying the user’s password field in the
user database. This can be done manually using vipw or chpass.

One FreeBSD and DragonFly, the pw utility can be used to lock and unlock an account. It
locks an account by prefixing the password field with “*LOCKED*”. For example to lock a
user by name:

$ pw lock fred

Or to unlock an account by the UID:

pw unlock 2395

On NetBSD, the usermod (or user mod) program with the -C switch can be used to lock
accounts. It also prefixes the password hash with “*LOCKED*”. To lock an account use:

$ usermod -C yes julie

And to unlock the account:

$ usermod -C no julie

TODO: OpenBSD’s version of NetBSD’s usermod doesn’t have this lock functionality; does
OpenBSD have a tool for this? Or just do it manually?

TODO: locking accounts can also be done with password change time and expiration times.
This could mention that briefly, but doesn’t cover it.

TODO: point to section describing master.passwd format

Examples

Practice Exercises

1. Use vipw or chpass to manually lock the account. And then test a login. And then
unlock.

More information

vipw(8); chpass(1), pw(8), user(8)

78

4.9. DETERMINE IDENTITY AND GROUP MEMBERSHIP

4.9 Determine identity and group membership

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

In the context of the Unix permission system, determining one’s identity and group member-
ship is essential to determine what authorizations are available. Be able to determine, and as
required, change identity or group membership.

Introduction

The user’s priviledges determine what kind of access (if any) to given files and directories a
user have. Groups are a mean to simplify user management.

Examples

We can determine our identity – that is our username and groups to which we belong – using
id , groups and whoami commands.

Our username can be determined by simply executing whoami command without any
parameters.

$ whoami
user

In the above example we’re logged into the system as a user . The whoami command is
equivalent to id -un .

The groups command let us check to which groups we’re currently begin assigned to. It
can also be used to check other existing user’s group membership. Executing groups without
a username will display information on us.

$ groups
users audio mail cvs
$ groups john
users mail
$ groups mike
groups: mike: no such user

The groups command is equivalent to id -Gn .
The id command may take few arguments and can output many informations on given user.

In most basic usage it displays our user ID (uid), our basic group id (gid) and groups to which
we belong to.

$ id
uid=1001(user) gid=100(users) groups=100(users), 92(audio), 1003(mail), 1004(cvs)

79

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

It can also be used to display the very same information on other user.

$ id john
uid=1002(john) gid=100(users) groups=100(users), 1003(mail)

Note, that the above mentioned commands will not display our new groups membership
untill we’ll logout and login again.

As explained above, some commands let us peek into other user’s identity information,
which might be useful to system administrators for checking other logged in users. To see
who is currently logged in execute who command:

$ who
root ttyv1 Jan 4 23:16
user ttyp0 Jan 5 22:19 (192.168.86.11)

This command outputs some more information on all logged users: username, tty name,
date and time of login and remote host’s IP address if it is not local. It can also display the
very same information only about us:

$ who am I
user ttyp0 Jan 5 22:19 (192.168.86.11)

Finaly, having determined who we are – our username and groups membership – we may
sometimes need to switch to more priviledged account (most commonly root) without com-
pletely logging out current user. To do so, we’ll use the su command.

The su command may be given with or without a username. Given without a username su
switches do superuser root . Password is not echoed in any form (not even with * marks).

$ whoami
user
$ su
Password:
whoami
root

Most commonly, when switching to normal user account, we’d like to simulate a full loing.
This is done with the - parameter:

$ whoami
user
$ echo $HOME
/home/user
$ su - john
Password:
$ whoami
john
$ echo $HOME
/home/john

80

4.10. DETERMINE WHO IS CURRENTLY ON THE SYSTEM OR THE LAST TIME A
USER WAS ON THE SYSTEM

Practice Exercises

1. Compare the output of whoami and id -un commands.

2. Compare the output of groups and id -Gn commands.

3. Try executing id with a variation of all parameters described in id(1) system manual.

4. Try checking information on both existing and not existing users.

5. Try executing who with arguments: -H , -q , -m , and -u .

6. Check the result of su command with parameters: - , -l , and -m .

More information

id(1), groups(1), who(1), whoami(1), su(1)

4.10 Determine who is currently on the system or the last
time a user was on the system

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems maintain databases which can be queried for details regarding logins. Be familiar
with the database names and the utilities available for determining login information.

Introduction

After logging into an account on BSD system we can see an information like:

Last login: Thu Jan 11 20:18:18 2007 on ttyv4

This and other kind of information about users and their doings (logins and logouts) is stored
in three files:

• /var/run/utmp which records information about current users,

• /var/log/wtmp containing information on users’ logins and logouts, as well as system’s
shutdowns and reboots (which won’t be discussed here),

• /var/log/lastlog storing information on users’ last logins.

Of course, manually gathering information from aforementioned files makes no sense at all.
Thus the BSD systems are equiped with a handful of simple commands that will fetch required
information for us.

81

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

Examples

Determining user’s last login time and date can be performed with a lastlogin(8) command:

$ lastlogin
root ttyv2 Thu Jan 11 19:12:23 2007
mike ttyp1 192.168.112.24 Thu Jan 11 20:43:05 2007

When executed with no user names lastlogin(8) displays information for all users. Adding
user name makes lastlogin(8) display information regarding only specified user.

The last(1) command displays a list of last logins. Executed without any parameters returns
a list for user executing it. To minimize the scope of returned list we can use the -n flag,
specifying maximum number of lines.

$ last
-n5 mike

mike ttyp1 192.168.112.24 Thu Jan 11 20:43 - 20:43 (00:00)
mike ttyv4 Thu Jan 11 20:42 - 20:42 (00:00)
mike ttyv4 Thu Jan 11 20:41 - 20:41 (00:00)
mike ttyp0 192.168.112.24 Thu Jan 11 20:37 still logged in
mike ttyp0 192.168.112.24 Thu Jan 11 20:18 - 20:37 (00:19)

The users(1) utility lists the login names of the users currently logged into the system.

$ users
root therek

The w(1) and who(1) tools returns a little more detailed information on current users. The
who(1) command displays who is on the system, while the w(1) presents also an information
on what they are doing as well as some other system information (covered in section 5.21).

$ who
root ttyv4 Jan 11 21:27
therek ttyp0 Jan 11 20:37 (192.168.112.24)
$ w
9:31PM up 19 days, 1:12, 2 users, load averages: 0.00, 0.02, 0.00
USER TTY FROM LOGIN@ IDLE WHAT
root v4 - 9:27PM 3 -csh (csh)
therek p0 192.168.112.24 8:37PM - w

BSD systems give us also an ability to check some more information on system users. To
do so, we can use a finger(1) utility with optional user name.

$ finger
Login Name TTY Idle Login Time Office Phone
root Charlie Root *v4 14 Thu 21:27
mike Mike Erickson p0 Thu 20:37
$ finger
mike
Login: mike Name: Mike Erickson

82

4.11. ENABLE ACCOUNTING AND VIEW SYSTEM USAGE STATISTICS

Directory: /home/mike Shell: /usr/local/bin/bash
On since Thu Jan 11 20:37 (CET) on ttyp0 from 192.168.112.24
Last login Thu Jan 11 20:43 (CET) on ttyp1 from 192.168.112.24
New mail received Thu Jan 11 21:38 2007 (CET)

Unread since Thu Jan 11 21:28 2007 (CET)
No Plan.

Practice Exercises

1. Execute lastlogin(8) without, with only one, and with at least two user names.

2. Login to a couple of different accounts and check the result of who(1) command with
-H and -q flags.

3. Login to a couple of different accounts and check the result of w(1) command executed
with flags: -d , -i , -h .

4. Compare the output of finger(1) command with -s user and -hs user parameters.

5. Try out finger(1) with -l flag.

More information

wtmp(5), utmp(5), w(1), who(1), users(1), last(1), lastlogin(8), lastlog(5), finger(1)

4.11 Enable accounting and view system usage statistics

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware of when it is appropriate to enable system accounting, recognize which utilities are
available to do so, and know how to view the resulting statistics.

Introduction

The kernel keeps track of various attributes of all processes and, when system accounting is
enabled, this information is saved when the process terminates. The accounting information
includes the command name, the starting time, the amount of time used by the system and the
user (TODO: explain that), the elapsed time, the user ID and group ID, the average amount of
memory used, the count of I/O operations, and the terminal (tty) where the process was started.
The accounting also records if the process was forked without replacing the parent process
(exec) and how the process was terminated (such as with core dump or killed by a signal).

83

CHAPTER 4. USERS AND ACCOUNTS MANAGEMENT

The system accounting is enabled by running the accton command with the path to the file
to store the data as the argument, commonly at /var/account/acct.

System accounting is turned off by running accton without any arguments.
TODO: show how is enabled at boot time on all BSDs
TODO: show example of data; show examples of sa, ac, accton, lastcomm
TODO: not the same, but also cover “last”

Examples

Practice Exercises

More information

ac(8), sa(8), accton(8), lastcomm(1), last(1)

84

5 Basic System Administration

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

An important component of system administration is an awareness of its subsystems and
their interactions, as well as how to monitor the health of a running system. Demonstrate
experience in interacting with BSD processes, a running kernel, and the BSD boot process.
Demonstrate familiarity with BSD devices, the disk subsystem and the mail and print daemons.

• 5

• 5.2

• 5.2

• 5.5

• 5.6

• 5.7

• 5.8

• 5.12

• 5.9

• 5.11

• 5.16

• 5.13

• 5.16

• 5.18

• 2.9

• 5.18

• 5.4

• 5.20

• 5.14

85

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

• 5.21

• 5.21

• 5.23

• 5.24

• 5.25

5.1 Determine which processes are consuming the most
CPU

TODO: is this section header okay? “process is” versus “processes are”

• No, we definitely need one of the above. I suggest “processes are” –ceri

I concur, and had the gall to make the change ;-). Now, do we not also
need “cycles” at the end? —KevinDKinsey

Author: hubertf ?? ??
Reviewer: ?? ceri@FreeBSD.org FreeBSD|OpenBSD
Reviewer: name ?? ??

Concept

Be able to view active processes and recognize inordinate CPU usage. In addition, know how
to end a process or change its priority.

Introduction

There are several programs that allow showing CPU utilization on a Unix system. Some of
them can be found on every kind of system, some are specific to others. Here’s a list:

• ps(1) : The command is available on all Unix systems, but the evil thing is that the set
of options differs between systems. The good news is that all BSD systems use the same
set of options, and by running “ps -aux” the list is sorted to have the process using the
most CPU time on the top.

• top(1) : This interactive command is not available on all Unix systems, but it’s part
of every BSD system. Running it will display some system statistics on the top of the
screen, and then provide a list of processes that’s sorted by CPU utilization by default.
The display is updated every few seconds, so any process that starts hogging the CPU
can be determined easily.

86

5.1. DETERMINE WHICH PROCESSES ARE CONSUMING THE MOST CPU

• systat(1) : This program can only be found on BSD systems. It can display a wide range
of system statistics, and the default is to display processes and their CPU utilization.
Unfortunately no process ID is shown, so if a certain process misbehaves some other
method needs to be used to precisely determine the guilty party.

Now that we know how to determine general process stats, managing them should be dis-
cussed. For that, processes need to be identified, which is done via a process ID (PID) that
is unique for each running process on a system. The above programs, with the exception of
systat(1), can be used to determine the PID of a running process.

Operations that can be done on processes include:

• change priority: this is usually done using the renice(1) program or shell builtin. The
priority there is given as a “niceness” level, which goes from -20 (not nice at all, the
highest priority) to 20 (very nice, or the lowest priority). Nice levels below (i.e., priorities
higher than) 0 are reserved for the superuser, and a non-superuser process that has had its
nice level increased (and therefore its priority decreased) cannot undo this change later.

• start with different priority: If a process is known to need less or more CPU time than
is assigned by default, it can be started with a different nice level. This is done using the
nice(1) command.

• abort the process: there are several commands that can be told to a process, by sending
it a certain “signal”. The command to send signals to a process is kill(1), and a list of
possible signal names can be printed with “kill -l”. See the signal(7) manpage for a
description of the signals and their default handlers.

Please note that a process can ignore most signals, or install a new handler to do whatever
it likes to do with a signal. There’s only one signal that can’t be ignored, and which also
doesn’t give a process the chance to clean up after itself, SIGKILL (9). Be sure to only
use this as a last resort, as unpleasant side-effects may happen! In most cases, the default
of SIGTERM (15) is sufficient to end a process.

Examples

Determine the process that takes most CPU:

% ps -aux | head -3
USER PID %CPU %MEM VSZ RSS TTY STAT STARTED TIME COMMAND
feyrer 5924 50.0 5.9 104588 30900 ttyp6 R+ 12:17AM 0:03.31 qemu -m 64 -bo
root 25528 13.7 0.2 468 1104 ttyp4 R+ 12:17AM 0:00.85 /usr/bin/find

Now that we know qemu hogs the CPU, nice it down a bit. Running ’renice’ without
arguments will show its usage:

% renice
Usage: renice [<priority> | -n <incr>] [[-p] <pids>...] [-g <pgrp>...] [-u <user>...]

Let’s say we want to change the nice level of process 5924 (qemu) from the default of 0 to
10:

87

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

% renice 10 -p 5924
5924: old priority 0, new priority 10

Upon observation we will still see that the process takes the most CPU:

% ps -aux | head -3
USER PID %CPU %MEM VSZ RSS TTY STAT STARTED TIME COMMAND
feyrer 5924 27.1 11.6 104704 60636 ttyp6 RN+ 12:17AM 0:31.38 qemu -m 64 -bo
feyrer 1206 1.9 10.8 73896 56304 ? Ra 11:48AM 75:11.33 /usr/pkg/lib/f

This is because no other process claims the CPU. If another process (e.g. your windowing
system, or a compile job) would claim the CPU, the qemu process would relinquish the CPU
until no other job needs it.

If the command still uses too much CPU and you are very certain that there is no other way
to end it (e.g. by properly ending it; in the case of Qemu by shutting down the system being
emulated), it can be killed using the kill(1) command:

% kill 5924

If, for some reason, a process catches the default signal (SIGTERM, 15), a different signal
number can be given to the kill(1) command either by name or by signal number that is
known to terminate the process unconditionally - be very careful with this:

% kill -9 5924
% kill -KILL 5924

Both of the preceding commands have the same effect; they send the SIGKILL signal to the
process with process ID 5924.

Practice Exercises

• Determine a list of processes running on your systems using top(1), ps(1) and systat(1).

• Determine which process consumes the most CPU time

• Make sure the process is not critical to the system’s operation, and lower its priority by
increasing its nice-level

• Try to increase the process’ priority again, i.e. lower the nice-level, and see it fail during
this operation.

• Send the process the SIGTERM signal.

• Possibly restart the process.

More information

top(1), systat(1), ps(1), nice(1), renice(1), kill(1), signal(7)

88

5.2. VIEW AND SEND SIGNALS TO ACTIVE PROCESSES

5.2 View and send signals to active processes

Author: hubertf ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be familiar with both the names and numbers of the most commonly used Unix signals and
how to send a signal to an active process. Recognize the difference between a SIGTERM and
a SIGKILL.

Introduction

Section 5 talks about processes, and how to list and manage them. This topic is covered in a
bit more depth here, by listing other tools besides kill(1):

• pgrep(1): Many times you will find yourself wanting to look for a certain process, using
a pipeline of “ps ... | grep ...”. The pgrep(1) command automates this - you give it
a programm name, and it will print the process ID of the process(es) that match the
command name. This command is available on all BSD systems.

• pkill(1): Like pgrep(1) this command looks throught the list of processes running on a
system, and sends a certain signal to all processes matching a given name.

• killall(1): This command performs the same operation as pgrep(1). It is only available
on FreeBSD, its existance predates that of pgrep(1).

Examples

See section 5 for examples on using ps(1) and kill(1). The following example achieves the
same goal with the commands introduced here:

pgrep -lf named
338 /usr/sbin/named -u bind
pgrep named
338
kill named
pgrep named
#

Practice Exercises

See section 5 and perform the same tasks with pgrep(1) and pkill(1).

More information

ps(1); kill(1); killall(1); pkill(1); pgrep(1)

89

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

5.3 Use an rc.d script to determine if a service is running and
start, restart or stop it as required

Author: hubertf ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

In addition to directly sending signals to processes, realize that BSD systems provide scripts
which can be used to check the status of services and to stop, start and restart them as required.
Be aware of the locations of these scripts on each of the BSD systems. Note : this objective
does not apply to OpenBSD.

Introduction

In NetBSD and FreeBSD,the traditional system startup script /etc/rc has been split into tiny
scripts that start and stop individual services (similar to what SysVR4 systems have done
for some time). Each script runs at system boot, and determines via variables set in the file
/etc/rc.conf whether its service should be started or not. A similar operation is performed at
system shutdown to turn off running services.

The advantage this approach has to the system administrator that he doesn’t need to know
any details about how to start or stop a system - running the corresponding rc.d script with an
argument of either ’start’ or ’stop’ is sufficient. As an extension over the System V behaviour,
an argument of ’status’ displays the service’s status, and ’restart’ stops and then starts the
service again.

A list of scripts (and thus services) that can be run can be found in the /etc/rc.d directory
(hence the scripts are often called “rc.d scripts”).

Examples

Here is a list of rc.d scripts from a NetBSD 4.0 system:

netbsd% ls /etc/rc.d
DAEMON downinterfaces lpd postfix sshd
LOGIN fixsb mixerctl powerd staticroute
NETWORKING fsck mopd ppp swap1
SERVERS ftpd motd pwcheck swap2
accounting hostapd mountall quota sysctl
altqd identd mountcritlocal racoon sysdb
amd ifwatchd mountcritremote raidframe syslogd
apache inetd mountd raidframeparity timed
apmd ipfilter moused rarpd tpctl
bootconf.sh ipfs mrouted rbootd ttys
bootparams ipmon named root veriexec

90

5.3. USE AN RC.D SCRIPT TO DETERMINE IF A SERVICE IS RUNNING AND START,
RESTART OR STOP IT AS REQUIRED

btconfig ipnat ndbootd route6d virecover
btcontrol ipsec network routed wdogctl
bthcid irdaattach newsyslog rpcbind wscons
ccd iscsi
cgd isdnd nfslocking rtclocaltime xdm
cleartmp kdc ntpd rtsold xfs
cron ldconfig ntpdate rwho ypbind
dhclient lkm1 pf savecore yppasswdd
dhcpd lkm2 pftarget nfsd rtadvd wsmoused
cgd isdnd nfslocking rtclocaltime xdm
cleartmp kdc ntpd rtsold xfs
cron ldconfig ntpdate rwho ypbind
dhclient lkm1 pf savecore yppasswdd
dhcpd lkm2 pf

boot screenblank ypserv
dhcrelay lkm3 pflogd sdpd
dmesg local poffd securelevel

Here is the same listing on FreeBSD 6.2:

freebsd% ls /etc/rc.d
DAEMON devfs kadmind nfsd rpcbind
LOGIN dhclient kerberos nfslocking rtadvd
NETWORKING dmesg keyserv nfsserver rwho
SERVERS dumpon kldxref nisdomain savecore
abi early.sh kpasswdd nsswitch sdpd
accounting encswap ldconfig ntpd securelevel
addswap fsck local ntpdate sendmail
adjkerntz ftpd localpkg othermta serial
amd gbde lpd pccard sppp
apm geli mdconfig pcvt sshd
apmd geli2 mdconfig2 pf swap1
archdep hcsecd mixer pflog syscons
atm1 hostapd motd pfsync sysctl
atm2 hostname mountcritlocal power
atm3 ike mountcritremote powerd timed
auditd inetd mountd ppp tmp
autoprofile syslogd
atm3 ike mountcritremote powerd timed
auditd inetd mountd ppp tmp
auto

linklocal initrandom mountlate pppoed ugidfw
bgfsck ip6addrctl moused pwcheck usbd
bluetooth ip6fw mroute6d quota var
bootparams ipfilter mrouted ramdisk virecover
bridge ipfs msgs ramdisk-own watchdogd
bsnmpd ipfw named random wpa

91

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

bthidd ipmon natd rarpd ypbind
ccd ipnat netif resolv yppasswdd
cleanvar ipsec netoptions root ypserv
cleartmp ipxrouted networksupplicant
bthidd ipmon natd rarpd ypbind
ccd ipnat netif resolv yppasswdd
cleanvar ipsec netoptions root ypserv
cleartmp ipxrouted network

ipv6 route6d ypset
cron isdnd newsyslog routed ypupdated
devd jail nfsclient routing ypxfrd

To determine the status of a service, run the rc.d script with ’status’:

netbsd# sh /etc/rc.d/ipfilter status
ipf: IP Filter: v4.1.13 (396)
Kernel: IP Filter: v4.1.13

Running: yes
Log Flags: 0 = none set
Default: pass all, Logging: available
Active list: 0
Feature mask: 0x10e

Note that the ’status’ command is not available for all scripts:

netbsd# sh /etc/rc.d/postfix status
/etc/rc.d/postfix: unknown directive ’status’.
Usage: /etc/rc.d/postfix ??stop restart rcvar reloadstart stop restart rcvar reload

To stop a service, run its rc.d script with the ’stop’ argument:

pgrep -lf postfix
166 /usr/libexec/postfix/master

sh /etc/rc.d/postfix stop
postfix/postfix-script: stopping the Postfix mail system

pgrep -lf postfix
#

To start it (again), use the same script with the ’start’ argument:

sh /etc/rc.d/postfix start
postfix/postfix-script: starting the Postfix mail system

pgrep -lf postfix
12101 /usr/libexec/postfix/master
#

Now let’s do this again in one command:

92

5.4. CONFIGURE A SERVICE TO START AT BOOT TIME

pgrep -lf postfix
12101 /usr/libexec/postfix/master

sh /etc/rc.d/postfix restart
postfix/postfix-script: stopping the Postfix mail system
postfix/postfix-script: starting the Postfix mail system

pgrep -lf postfix
472 /usr/libexec/postfix/master
#

Practice Exercises

• Determine if your system has rc.d scripts by looking into /etc/rc.d

• Determine what scripts your system has

• Check if the cron daemon runs

• Assuming the cron daemon does run, stop it using the corresponding rc.d script

• Restart the cron daemon, and verify with a tool of your choice.

More information

rc(8), rc.conf(5), rc.subr(8)

5.4 Configure a service to start at boot time

Author: name ?? ??
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??

Concept

Recognize that the BSD boot process does not use runlevels. Be able to configure essential
services to start at boot time to minimize the impact of a system reboot.

Introduction

Examples

Practice Exercises

More information

rc.conf(5), rc(8), inetd(8)

93

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

5.5 View and configure system hardware

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems come with many utilities to determine what hardware is installed on a system.
Know how to determine which hardware was probed at boot time as well as some BSD specific
utilities which can be used to troubleshoot and manipulate PCI, ATA, and SCSI devices.

Introduction

Examples

Practice Exercises

More information

dmesg(8), /var/run/dmesg.boot, pciconf(8), atacontrol(8) and camcontrol(8); atactl(8) and
/kern/msgbuf; scsictl(8) or scsi(8)

5.6 View, load, or unload a kernel module

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Undertand the difference between a statically compiled kernel and one that uses loadable kernel
modules. Be able to view, load and unload kernel modules on each BSD system but should be
aware that kernel modules are discouraged on NetBSD and OpenBSD systems.

TODO: Are they really discouraged? Where documented?

Introduction

Kernel modules provide extra functionality that a system administrator can add to their running
kernel. Common examples include audio device drivers, network interfaces, RAID and other
hardware drivers, extra filesystems support, packet filtering, binary compatibility support for
other operating systems (like Linux), and console screen savers. In most cases, this extra
functionality or hardware support can be configured and then built in to your monolithic kernel.
But using kernel modules may be more convenient.

94

5.7. MODIFY A KERNEL PARAMETER ON THE FLY

On FreeBSD and DragonFly, the kernel module filenames have an .ko extension. NetBSD
and OpenBSD kernel modules end with .o.

On FreeBSD, the default kernel modules are located at /boot/kernel. DragonFly’s kernel
modules are located in the /modules directory. NetBSD’s kernel modules are at /usr/lkm.
TODO: And OpenBSD

TODO: list a few common modules TODO: show how to find modules
FreeBSD and DragonFly use kldload, kldunload, and kldstat to load, unload and to view

details, respectively. NetBSD and OpenBSD use the modload, modunload, and modstat tools.

Examples

The following is an example of runninng kldstat to list modules on a DragonFly system:

kldstat
Id Refs Address Size Name
1 5 0xc0100000 5eff14 kernel
2 1 0xc06f0000 2b58 ecc.ko
3 1 0xc06f3000 591d0 acpi.ko
4 1 0xdd68c000 3000 null.ko

The “refs” column shows the number of modules referenced by the kernel object. TODO:
The “address” column shows the load address of (the pointer to) the kernel object. The “size”
is the size in hexadecimal.

In the above examples, “ecc” is for AMD64 ECC memory controller, “acpi” is for ACPI
power management, and “null” provides the mount_null filesystem support.

TODO: explain why the kernel listed
TODO: should this mention -v? maybe not for BSDA?

Practice Exercises

More information

kldstat(8), kldload(8), kldunload(8), and loader.conf(5); modstat(8), modload(8), modun-
load(8), and lkm.conf(5)

5.7 Modify a kernel parameter on the fly

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: Mark Foster mark@foster.cc FreeBSD
Reviewer: name ?? ??

Concept

BSD systems maintain kernel MIB variables which allow a system administrator to both view
and modify the kernel state of a running system. Be able to view and modify these MIBs both
at run-time and permanently over a system boot. Recognize how to modify a read-only MIB.

95

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

Introduction

Consider this excerpt from the sysctl(8) man page on FreeBSD:

The sysctl utility retrieves kernel state and allows processes with appropriate priv-
ilege to set kernel state. The state to be retrieved or set is described using a
“Management Information Base” (MIB) style name, described as a dotted set of
components.

As you can see sysctl is a powerful technology to tune your system. Some sysctl variables
can be modified on-the-fly and thus change how your system works without rebooting. Other
values, when changed, only take effect after a reboot. When this is the case, it makes (more)
sense to update your sysctl.conf/loader.conf and reboot your system.

TODO: mention that there are a lot and the total amount varies
Some common sysctl variables include:
TODO: add brief description of each:

• hw.machine_arch

• kern.clockrate

• kern.maxfiles

• kern.maxproc

• kern.ostype

• kern.securelevel TODO: point to other wiki page for details

• kern.version

• net.inet.ip.forwarding TODO: point to other wiki page for details

• vm.loadavg

Examples

List all sysctl variables:

sysctl -a

Show subset of sysctl variables relevant to cpu:

sysctl -a | grep cpu

Show subset of sysctl variables for a top-level identifier or for a sub-level identifier:

sysctl kern

Or:

sysctl net.inet

List only the specific variable that you need:

96

5.7. MODIFY A KERNEL PARAMETER ON THE FLY

sysctl kern.ostype
kern.ostype: FreeBSD

TODO: maxusers is not portable, please replace this example with maxproc or maxfiles

sysctl kern.maxusers
kern.maxusers: 93

TODO: maybe mention opaque values and -o
Update a sysctl variable:
TODO: blackhole is not portable, maybe replace with something that is portable and

applicable to beginning admin

sysctl net.inet.tcp.blackhole
net.inet.tcp.blackhole: 0
sysctl net.inet.tcp.blackhole=2
net.inet.tcp.blackhole: 0 -> 2
sysctl net.inet.tcp.blackhole
net.inet.tcp.blackhole: 2

Now you can test tcp blackhole with some tools like nmap. When you understand that
variables you want do change in your system, you must update sysctl.conf file. In new system
sysctl.conf is empty(only comment line). You can update sysctl.conf with editor like vi an
save it.

cat sysctl.conf
net.tcp.blackhole=2

Some variables, such as hardware variables that are read-only on the running system, cannot
be set in sysctl.conf. In that case and you need add lines in loader.conf which is read earlier in
the boot process.

The information presented here is also applicable to OpenBSD, although the kernel MIB
variables do differ. Hence the blackhole example will not work on OpenBSD. In addition
OpenBSD does not use a loader.conf file for adjusting kernel MIB variables.

TODO: explain how to know which values can be modified on the fly, and which require a
reboot.

TODO: show on NetBSD for proc.PID or proc.$$

Practice Exercises

For OpenBSD and FreeBSD. Change on the fly these variables:

• kern.maxproc to 1000

• net.inet.ip.forwarding to 1 (What does this do?)

Set these variables in system files (as described above) and reboot, check that variables are
changed after rebooting.

TODO: let’s just use same variables that are common to all these for a beginning admin – by
keeping few differences between the BSDs will make this book easier for new admin

Set these variables such that the changes will remain following subsequent reboots.

97

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

More information

sysctl(8), sysctl.conf(5), loader.conf(5)

5.8 View the status of a software RAID mirror or stripe

Author: name ?? ??
Reviewer: ?? ceri@FreeBSD.org FreeBSD|OpenBSD
Reviewer: jdq ?? OpenBSD

Concept

In addition to providing drivers for hardware RAID devices, BSD systems also provide built-
in mechanisms for configuring software RAID systems. Know the difference between RAID
levels 0, 1, 3 and 5 and recognize which utilities are available to configure software RAID on
each BSD system.

Introduction

Software RAID
Raid is performed by using a kernel device driver. Raidframe is an example of this. Software

raid is a inexpensive raid solution that can be deployed on any system. Software raid is a great
opportunity to practice raid without investing in an expensive raid card.

Hardware RAID
Hardware raid is performed by a controller card. The most common are produced by LSI and

Adaptec. These controller cards offload the workload of parity and transactions across multiple
disks, and provide the operating system with a single virtual device to represent this set. It is
notable to mention that many cards advertised as raid cards are simply controller cards bundled
with a driver that requires the OS to handle parity and transactions. This is not a hardware raid
solution. Also many hardware raid cards available on todays market may only be configured
during bootup.

RAID Levels

RAID level 0

Raid level 0 traditionaly described a grouping of disks, with data striped evenly across without
parity. This means that any single disk failure results in the failure of the complete set. the
term “Raid level 0” no longer necessarily means the data is evenly distributed across all disks
in a stripe, just that a set of disks are not fault-tolerant.

RAID level 1

Raid level 1, also called mirroring or shadowing, groups disks into pairs. A single copy of each
block is stored on an accompanying disk. Raid level 1 is highly reliable and can tolerate disk
failures up to N/2 without losing data, as long as two disks in a pair do not fail.

98

5.8. VIEW THE STATUS OF A SOFTWARE RAID MIRROR OR STRIPE

RAID level 3

In Raid level 3, data is striped across data disks, and an additional parity disk stores the parity
of the data. When any single disk fails, the data may be recovered by computing the incomplete
data from the parity disk. Multiple disk failures may be tolerated with the addition of multiple
check disks.

RAID level 5

Raid level 5 is similar to raid level 3, with the exception that the parity data is evenly distributed
acrossed all disks.

Raid on Raid

It is possible to combine raid levels. For instance, You may build two raid level 1 sets of a pair
of two disks each. You may then stripe these two raid level 1 sets as raid level 0. This is not
commonly done due to complexity, but is available when necessary.

RAIDframe: framework for rapid prototyping of RAID structures
RAIDframe is a software RAID solution. It is generaly used when hardware raid solutions

are not cost effective.
RAIDframe was developed at Carnegie Mellon University. RAIDframe, as distributed by

CMU, provides a RAID simulator for a number of different architectures, and a user-level
device driver and a kernel device driver for Digital Unix. Greg Oster developed this framework
as a NetBSD kernel-level device driver. It has since been ported to OpenBSD and FreeBSD.

To check the status of a raid device, /dev/raid0, use:

raidctl -s raid0

ccd
ccd is a software raid solution. Example output...
gstripe/raid3/mirror
gstripe, graid3, and gmirror is a software raid solution on FreeBSD(?). Example output...
View status of a gstripe set:

gstripe status

View status of a gmirror set:

gmirror status

View status of a graid3 set:

graid3 status

gvinum/vinum
gvinum on freebsd and vinum on netbsd is a software raid solution. Example output....
bioctl
bioctl is an OpenBSD userland interface to hardware raid controllers and enclosures.

Example of checking the health of a bioctl-compatible raid set:

99

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

loki@i386 man4$ sudo bioctl arc0
Password:
Volume Status Size Device
arc0 0 Online 127999672320 sd2 RAID5

0 Online 320072933376 0:0.0 noencl <ST3320620AS 3.AAD>
1 Online 320072933376 0:1.0 noencl <ST3320620AS 3.AAD>
2 Online 320072933376 0:2.0 noencl <ST3320620AS 3.AAC>

arc0 1 Online 127999672320 sd3 RAID0
0 Online 320072933376 0:0.0 noencl <ST3320620AS 3.AAD>
1 Online 320072933376 0:1.0 noencl <ST3320620AS 3.AAD>
2 Online 320072933376 0:2.0 noencl <ST3320620AS 3.AAC>

arc0 2 Online 127999672320 sd4 RAID1
0 Online 320072933376 0:0.0 noencl <ST3320620AS 3.AAD>
1 Online 320072933376 0:1.0 noencl <ST3320620AS 3.AAD>
2 Online 320072933376 0:2.0 noencl <ST3320620AS 3.AAC>

Definitions

• Raid set

• Raid level

• parity

• reconstruction

• degraded mode

See Also

RAIDframe

• ?? CMU RAIDframe

• ?? NetBSD and RAIDframe

vinum(8), gvinum(8), gmirror(8), gstripe(8), graid3(8), raidctl(8), ccdconfig(8)

5.9 Configure system logging

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

100

5.10. CONFIGURE LOG ROTATIONS

Concept

Understand that the system automatically handles logging and has many different logs. Recog-
nize the syslog configuration and be able to add or change a logging entry. Be able to configure
the syslog server to not listen to network. Understand logging facilities and priorities.

Introduction

TODO: introduce syslogd and syslog.conf and logger basic facilities and levels

Examples

Practice Exercises

More information

syslog.conf(5), syslog(3), syslogd(8)

5.10 Configure log rotations

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand that the system automatically maintains many different logs. Be able to configure
log rotation by either time or size.

Introduction

By default, the BSD systems run “newsyslog” once every hour via cron. (The cron scheduler
is covered in section ?? .)

Examples

Practice Exercises

More information

Note that the newsyslog(8) implementations vary by BSD. newsyslog(8), newsyslog.conf(5),
syslog.conf(5)

101

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

5.11 Review log files to troubleshoot and monitor system
behavior

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware of the importance of reviewing log files on a regular basis as well as how to watch a
log file when troubleshooting. Be able to view compressed logs.

Introduction

tail: display the last part of a file
grep: print lines matching a pattern
dmesg: display the system message buffer
/var/log*: the default directory for log files
Using tail:
The default is tail -n 10 which views the last 10 lines of the file. tail -f logfilename reads the

last 10 lines and waits for more input

Examples

Practice Exercises

More information

tail(1), /var/log/*, syslog.conf(5), grep(1), dmesg(8), zmore(1), bzcat(1)

5.12 Determine which MTA is being used on the system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Recognize the role of the MTA, recognize which MTA(s) are available during each BSD’s
operating system install routine and which configuration file indicates the MTA in use on the
system. Recognize the difference between the mbox or maildir mail destination file format
type.

102

5.13. CREATE OR MODIFY EMAIL ALIASES FOR SENDMAIL OR POSTFIX

Introduction

By default, the BSD systems have mail transfer agent (MTA) enabled for at least handling
mails sent from the local machine.

FreeBSD, OpenBSD, and DragonFly include Sendmail in their base installs. NetBSD in-
cludes Postfix. (TODO: FOOTNOTE: Older versions of NetBSD included both Sendmail and
Postfix.)

Third-party MTA alternatives or sendmail replacements are available through the package
collections, such as Exim, Qmail, Postfix and many others. (TODO: check Qmail – I don’t
think in OpenBSD ports.)

Selecting the MTA can be done by configuring the mailer.conf configuration used by the
mailwrapper tool. The BSD’s default /usr/sbin/sendmail (TODO: what about /usr/lib/sendmail)
is really a symlink to /usr/sbin/mailwrapper. This uses /etc/mail/mailer.conf (or /etc/mailer.conf
on NetBSD) to define common replacement programs.

TODO: for example
TODO: show how can be tested
TODO: note that this BSDA doesn’t teach how to configure a mail server, but TODO: briefly

cover how to turn on and off and how to disable at boot and where logs are at TODO: point to
other sections for details

Examples

Practice Exercises

1. What is your default sendmail?

More information

mailer.conf(5)

5.13 Create or modify email aliases for Sendmail or Postfix

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand when to create an email alias and how to do so for either Sendmail or Postfix.

Introduction

It is frequent situation that being a system administrator you have to receive information sent to
couple of e-mail addresses, like ex. admin@mydomain.net, abuse@mydomain.net or hostmas-
ter@mydomain.net. One way of doing so is maintaining an e-mail account for each address

103

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

and frequently checking all of them for new mail. Although it would work, in the long run it
would cause unnecessary complication to the e-mail account system. The other way is using
mail aliases .

E-mail alias is an entry in aliases file. It explains to MTA which existing e-mail account
should receive mail bound for given e-mail address. It is usefull for both permanent and tem-
porary aliases, as well as for keeping small mailing lists. Some e-mail aliases are required by
RFC 2142.

Both Postfix and Sendmail use the /etc/mail/aliases file to define e-mail aliases. The file
format is similiar for both MTAs. The names of existing accounts and aliases can be specified
without trailing @ and domain name for local accounts.

The MTA actually does not read directly from /etc/mail/aliases file. Instead, it reads infor-
mation from /etc/mail/aliases.db, the random access data base. Thus after every modification
of aliases file the data base has to be rebuild by simply executing the newaliases(1) command.
There is no need to restart the MTA daemon.

TODO: write couple words on postalias(1) command.

Examples

Aliases are specified in the format of alias name: existing account. The existing account can
be substituted by one or more account names in form of a coma separated list.

Sample alias for an administrator that should receive root’s mail:

root: mike

Sample alias for an e-mail admin@mydomain.net that should be delivered to all the
administrators:

admin: mike, john, stacy

Now, let’s say we have three senior administrators: Mike, John, Stacy, and also two junior
administrators: Jane, and Paul. All of them should receive mail from admin account, but only
senior administrators should receive mail also from root and abuse accounts. Furthermore,
there’s also Jake who should receive abuse information as well. Alias configuration should
look like this:

root: senior
abuse: root, jake
admin: senior, junior
senior: mike, john, stacy
junior: jane, paul

Practice Exercises

1. Add practice alias pointing to your own account, rebuild data base and check whether
you’ll receive mail sent to this account.

More information

newaliases(1), aliases(5), postalias(1)

104

5.14. VIEW THE SENDMAIL OR POSTFIX MAIL QUEUE

5.14 View the Sendmail or Postfix mail queue

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to view the mail queue to determine if any mail is stuck in the queue, and if necessary,
ask the MTA to reprocess or flush the queue.

Introduction

As noted in section 5.12 , the BSD systems use Sendmail or Postfix by default for handling
mail.

The mail queue can be displayed using the mailq(1) utility. The queue listing identifies
messages that are still queued (not successfully sent or delivered yet). The output includes
MTA’s internal message identifier, the size of the message, the date and time the message was
accepted into the queue, the sender’s envelope address, and the recipient address(es), as well
as a reason of failure for messages that have permanently failed.

When using Postfix, if the mailq(1) utility is not setup, use postqueue -p to display the
traditional sendmail-style queue listing. To make MTA attempt to deliver all queued mail issue
commands: sendmail -q for Sendmail and postqueue -f for Posftix.

Examples

Following are two examples of mailq(1) output. First when used with Sendmail:

mailq
/var/spool/mqueue (1 request)
---Q-ID--- -Size- ---Q-Time--- --------Sender/Recipient-------
l0ID36a2085983 524 Thu Jan 18 14:03 <sender@mydomain.net>

(Deferred: Operation timed out with otherdomain.com.)
<recipient@otherdomain.com>

Total requests: 1

And an example when used with Postfix:

mailq
-Queue ID- -Size- ---Arrival Time--- -Sender/Recipient-----
D184ACAB55 709 Fri Jan 19 20:50:08 sender@mydomain.net
(delivery temporarily suspended: connect to mail.otherdomain.com[10.0.0.11]: Connection refused)

recipient@otherdomain.com
- 709 bytes in 1 Request.

105

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

Practice Exercises

1. When logged into your mail server, see the output of postqueue(1) and/or mailq(1)
commands (depending on which MTA is used).

More information

mailq(1), postqueue(1)

5.15 Read mail on the local system

Author: jdq ?? OpenBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be aware that by default, system messages may be emailed to the root user on the local system
and that a third-party MUA may not be installed. Be able to both read and send mail using the
built-in mail(1) command. Know the location of user mailbox files.

Introduction

cron job output is emailed. cron -l. see cron. see cron run.
(Maybe refer to section 5.20 and/or section ??).
location of mailboxes, /var/mail/... read mailboxes with mail -f

Examples

Show example of files that may indicate which MTA is in use. wrapper/alias file somewhere.
Refer to section 5.12

Practice Exercises

write an email,

mail
mail root, or ’m root’
begin typing your message. Lets ask the admin what version of ssh we have
how to set subject? find out with ? for help.
s this is the subject
e bring message to text editor (EDITOR), save
add someone to CC, see ? it is c, so:
c junioradmin
we are done here, ˆd

106

5.16. UNDERSTAND BASIC PRINTER TROUBLESHOOTING

EOT
&

reply to an email,

sudo mail -u root
list, reply to 1
r read file into message
!man ssh , to find out the switch to print ssh version,
|ssh -V, output is put into current message
cc junioradmin
save

add new folder ’questions’, add message 1 to folder ’questions’

More information

mail(1), /var/mail/\$USER, cron(8)
??

5.16 Understand basic printer troubleshooting

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to view the print queue and manipulate the jobs within the queue. Be able to recognize
the meaning of the first two fields in an /etc/printcap entry.

Introduction

Systems administration will invariably involve trouble shooting printers. The BSD spooling
system consists of five programs and several files, the key pieces to this system are lpd - the
line printer daemon, lpc - the administrative interface to the printing subsystem, lpr - adding
jobs to a print queue, lpq - list print jobs in the queue, lprm - remove print jobs from the queue.
The printer configuration file is /etc/printcap which describes all printers on the system.

The file printcap is the printing capabilities database, which is a simplified version of the
termcap(5) database used to describe printers.

The following shows an example printcap file:

Local Printer
lp|local line printer:\

:lp=/dev/lp:sd=/var/spool/output:lf=/var/log/lpd-errs:sh:
Remote Printer

107

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

rp|remote line printer:\
:lp=:rm=printhost:rp=lp:sd=/var/spool/output:lf=/var/log/lpd-errs:

All lines in the printcap file that start with a # are comments. Individual items are separated
by colons. The first field in the printcap database gives the printers names, which in the
example above is lp for the local printer and rp for the remote printer. The remaining fields
describe the printers characteristics, using name=value pairs, the name is a two character
code. The most important ones in the example above, are, in alphabetic order:

lf error log file pathname
lo lock filename
lp device special file
rm machine name for remote printer
rp remote printer name argument
sd spooling directory
sh suppress burst page - header page

Examples

Practice Exercises

More information

lpc(8), lpq(1), lprm(1), printcap(5)

5.17 Halt, reboot, or bring the system to single-user mode

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand the ramifications associated with halting, rebooting, or bringing a system to single-
user mode, recognize when it may be necessary to do so and how to minimize the impact on a
server system.

Introduction

When computers were first introduced to the general public (outside of the scientist’s labs
that were developing them), they were large and very expensive machines. For this reason,
almost all operating systems of that time period were conceived and developed as “multi-user”
systems. The BSDs, with deep roots in the UNIX tradition, are no exception.

While the advent of the PC (“personal computer”) has made it possible for each user in
some organizations to have their own machine, in many cases BSD machines are still used by
more than one user; in fact, most system “daemons” (servers) are classed as “users” as well.

108

5.17. HALT, REBOOT, OR BRING THE SYSTEM TO SINGLE-USER MODE

So are “client” computers that are connecting to your machine’s mail, web, or other services.
Rebooting while a program is performing an operation can cause problems. Also, it might
be considered downright rude to halt a system while a user is still working on an important
project.

For this reason, it is important to consider the issue of halting or rebooting a system. Doing
things the Right Way(tm) can benefit you greatly in the long run.

System States

From a purely logical point of view, the computer system has two states: OFF and ON. How-
ever, in reality, there are more possibilities: the system could be booting (going from OFF to
ON), or powering-down (going from ON to OFF), or “rebooting” (going from ON to OFF to
ON again). In addition, when a BSD system is ON, it can be in either single-user or multi-user
mode.

Single-user and Multi-user modes

During a “normal” boot process, init(8) attempts to bring the system up to “multi-user” mode.
System tty’s are made available, all daemons for the base system or installed from third-parties
and enabled by rc configuration files are started, network interfaces are brought “up”, and so
on. In the event that something goes wrong during this process, init will start “single-user”
mode instead. “Single-user” mode may also be forced from the boot menu during second stage
booting. Finally, you can “downgrade” a system to single-user mode using commands similar
to those used to halt, reboot, or power-down the system.

In single-user mode, there are no ttys available, the network is not brought up, etc. The
only possible “login” is as root, from the console. Generally, no password is required for root
in single-user mode. This can be changed by editing the ttys(5) file and marking the console
as “insecure”, in which case init(8) will ask for the root password before allowing a shell in
single-user mode. In cases where unauthorized personnel may have access to the physical
machine, it’s a good idea to make this change.

Shutdown(8)

shutdown(8) is a slightly nicer interface to the underlying system calls halt(8), fasthalt(8),
reboot(8), etc. It allows a warning message to be sent to other users, allows you to set a time
in the future for the change in system state to begin, etc.

Shutdown flags and arguments

Shutdown is called with a optional (but usually desired) flag and an optional time argument.

• “-p” = “power down”

• “-r” = reboot

• “-h” = halt the OS

The time parameter is one of: “now”, a (positive) integer for “minutes”, or an absolute
datetime of “yymmddhhmm” (2-digit year, month, date, hour, minute).

109

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

Examples

When called with no flags, shutdown will bring the system from multi-user down to
single-user mode:

shutdown

Turn the system off immediately (dependent on hardware support); if the system cannot be
powered off automatically, halt the operating system (equivalent to “shutdown -h now”)
instead:

shutdown -p now

Reboot the system in 45 minutes (see shutdown(8) for more information about what will
happen in the meantime):

shutdown -r 45

Power down one second prior to New Year’s Day, 2010:

shutdown -p 0912312359

“Kick” mode (kick off all users except root and disable non-root logins, but leave the
system in multi-user mode):

shutdown -k

Practice Exercises

1. Use shutdown to “downgrade” a system from multi-user to single-user mode.

2. Use shutdown(8) to halt and reboot a system.

3. Attempt to use shutdown to power-down a system.

4. Optional: If your system will not power-down with “shutdown -p”, research the follow-
ing:

• Motherboard make and model.

• BIOS manufacturer and date. Is an updated BIOS available?

• does the system’s BIOS use ACPI (Advanced Configuration and Power In-
terface) or the older APM (Advanced Power Management) as its Power Man-
agement API? Which Power API is supported by your OS in its current con-
figuration?

More information

• shutdown(8)

110

5.18. RECOGNIZE THE DIFFERENCE BETWEEN HARD AND SOFT LIMITS AND
MODIFY EXISTING RESOURCE LIMITS

5.18 Recognize the difference between hard and soft limits
and modify existing resource limits

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand that resource limits are inherited by the shell as well as how to view their limits and
change them both temporarily and permanently. In addition, understand the difference between
soft and hard limits.

Introduction

limit: (in the csh(1) man page) limits the consumption by the current process and each process
it creates to not individually exceed “maximum-use” and the specified “resource”. (TODO:
don’t use man page verbatim)

limits: set or display process resource limits, either prints or sets kernel resource limits
and may optionally set environment variables like env(1) and run a program with the selected
resources. (TODO: don’t use man page verbatim)

login.conf: login class capability database (/etc/login.conf, /.login_conf)
sysctl: get or set kernel state
View limits:
less /etc/login.conf or /.login_conf to see per user limits)
With limit (builtin): limit [-h] [resource [maximum-use]]
Resources include: cputime, filesize, datasize, stacksize, coredumpsize, memoryuse, heap-

size, descriptors (or openfiles), concurrency (TODO ???), memorylocked, maxproc, sbsize
Maximum-use: default descriptor size is “k” or kilobytes (except cputime)
Change limits:
Temporarily:
Permanently: 1) set them in login.conf 2) set them with limits 3) set them with builtin limit

4) set them with sysctl
Understand the difference between hard and soft limits: Hard limits set a ceiling on the value

of the soft limits. Only the super user may raise the hard limits, but a user may raise or lower
the current limits with the legal range.

Examples

Practice Exercises

More information

limit(1), limits(1), login.conf(5); sysctl(8) on NetBSD

111

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

5.19 Recognize common, possibly third-party, server
configuration files

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems are often used to provide Internet services. Be able to view or make a specified
change to a service’s configuration file and recognize the names of the most commonly used
configuration files and which applications they are associated with.

Introduction

Here is a quick listing of common server program names and configuration filenames with brief
descriptions and sample configuration syntax. This book doesn’t cover these server configura-
tions or maintenance.

TODO: please keep this section under a few printed pages.

Examples

Apache HTTPD

Note: this is included as part of OpenBSD.

BIND “named”

This is included in default install.

DHCP Daemon

TODO: the BSDs have different implementations, anything common?

Postfix Mail Server

Note: Postfix is included in default install of NetBSD.
TODO: this book doesn’t cover Postfix administration, but at least cross-reference to two

email sections

Sendmail Mail Server

This is included in default install of DragonFly, FreeBSD, OpenBSD, and old versions of
NetBSD.

TODO: this book doesn’t cover sendmail administration, but at least cross-reference to two
email sections

112

5.20. CONFIGURE THE SCRIPTS THAT RUN PERIODICALLY TO PERFORM
VARIOUS SYSTEM MAINTENANCE TASKS

Samba

TODO: note that this is third-party, but also point out some native “smb” tools/features too.

XFree86 or Xorg

TODO: should this be briefly mentioned too?

Practice Exercises

More information

httpd.conf(5), sendmail.cf, master.cf, dhcpd.conf(5), named.conf(5), smb.conf(5)

5.20 Configure the scripts that run periodically to perform
various system maintenance tasks

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

BSD systems provide many scripts that are used to maintain and verify the integrity of the
system. Be able to locate and run these scripts manually as required as well as configure which
scripts run daily, weekly and monthly on each BSD system.

Introduction

The BSD systems provide scripts for verifying integrity and security and for providing daily,
weekly, and monthly system maintenance and reports. These are started via cron. (Cron is
covered in section ?? .)

OpenBSD and NetBSD use shell scripts called /etc/daily, /etc/weekly, and /etc/monthly.
FreeBSD and DragonFly use a tool called ’periodic’ that runs several other scripts found in

/etc/periodic/daily, /etc/periodic/weekly, and /etc/periodic/monthly directories.
The output of the maintenance jobs is saved to /var/log/daily.out, /var/log/weekly.out, and

/var/log/monthly.out.
Also, the same reports are emailed to “root” (by default).
TODO: is the output of freebsd and dragonfly saved by default?
TODO: cover basics of what each does
TODO: mention configuration files
TODO: point to docs for more details
TODO: mention security script(s)
On OpenBSD, the daily job runs at 1:30 a.m. and the weekly job at 3:30 a.m. on Saturday.
On NetBSD, the daily job runs at 3:15 a.m. and the weekly job runs at 4:30 a.m.

113

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

On FreeBSD and DragonFly, the daily jobs run at 3:01 a.m. and the weekly job runs at 4:15
a.m.

The BSDs run the monthly job at 5:30 a.m. on the first day of the month.
TODO: note about no monthly by default on NetBSD.

Examples

Practice Exercises

More information

periodic.conf(5) and periodic(8) on Dragonfly and FreeBSD; security.conf(5), daily.conf(5),
weekly.conf(5), and monthly.conf(5) on NetBSD; daily(8), weekly(8), and monthly(8) on
OpenBSD

5.21 Determine the last system boot time and the workload
on the system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to monitor the system’s workload using the time since last system reboot, as well as
the system load over the last 1, 5 and 15 minutes in order to determine operation parameters.

Introduction

The uptime command can be used to show how long the system has been running since it last
booted. It also shows the current time, how many users are logged in, and the system’s load
averages over the past minute, five minutes and 15 minutes. For example:

$ uptime
6:17AM up 16 days, 12:28, 3 users, load averages: 0.18, 0.14, 0.09

The number of users is from the “utmp” database. (This is covered in section 4.10 .)
The time the system was booted is recorded in the kern.boottime sysctl. (The sysctl func-

tionality is covered in section 5.7 .)
The load average, also available from the vm.loadavg sysctl, is basically the number of

processes in the system’s run queue averaged over one minute, five minutes, and 15 minutes.
These are processes that are ready to run – not sleeping. The system is fully utilized when
this number is above 1.0. TODO: what about I/O blocking? TODO: discuss workload and
performance related to this load average TODO: discuss that load average may be different per
system or architecture and is not always a good reference

114

5.22. MONITOR DISK INPUT/OUTPUT

Examples

Practice Exercises

More information

uptime(1), w(1), top(1)

5.22 Monitor disk input/output

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

A system’s disk input/ouput can have a dramatic impact on performance. Know how to use the
utilities available on BSD systems to monitor disk I/O and interpret their results.

Introduction

Monitoring disk I/O can be crucial for troubleshooting a machine. There are a few common
symptoms that may indicate an overtasked disk I/O systems: slow or delayed starting of ap-
plications and shells, slow remote logins, or slowness in the specific main task the machine is
doing (e.g. e-mail server, database server, etc.). Thus it’s important to reliably monitor access
rates and throughput.

iostat

There are several ways this can be done, but the most common one is iostat(8). When started
without arguments it will display one or more header lines listing devices and a single statis-
tics line that represents the current I/O performance of those devices. This single snapshot is
often not a reliable indicator of true I/O performance and it’s more useful to specify the -w
N argument to iostat which tells it to display statistics in a loop, every N seconds. On a big
machine, there may be more devices than fit the screen so iostat will by default display only 5
devices. The portable way to override this, usable on all BSD’s is to specify device names on
the command line, but FreeBSD has extended iostat with -n N argument whichtells it to display
at most N devices.

vmstat

The vmstat utility displays low-level information from the kernel. When started without argu-
ments it will display a snapshot of statistics, but if called with -w N argument it will loop and
display a line of statistics every N seconds, similar to iostat. The specific information iostat
displays differs among the systems but it usually includes the amount of free memory, number

115

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

of page faults, memory paging activity (swap), and CPU stats. vmstat is important as it’s a
quick way to find out if the system’s high I/O rates are due to memory swapping.

systat

The systat utility is more complex than those already mentioned, as it’s a full-screen utility that
is usually used for long-term performance tracking (for example: started on a spare console
in the system room that is overseen by administrators). It has several display modes, which
differ among BSD systems, but the common ones are iostat, vmstat, netstat, mbufs, swap and
pigs. The display mode is specified directly on the command line (but prefixed with a - on
FreeBSD).

• iostat mode shows I/O statistics similar to the iostat utility

• vmstat mode shows kernel statistics similar to the vmstat utility

• netstat mode shows network I/O statistics similar to the netstat utility

• mbufs mode shows network buffers statistics

• swap mode shows swap usage

• pigs mode shows processes with highest CPU usage

Different BSD systems have some useful additions to the list of display modes, for example
FreeBSD has ifstat mode for per-network-interface statistics, and NetBSD has a ps mode that
displays a list of processes. See specific man pages for more information.

nfsstat

The nfsstat utility shows NFS statistics. When started without arguments it will display a
screenfull of information about NFS, but if called with -w N it will display a two line statics
every N seconds (about client and server NFS usage).

gstat

The gstat utility is specific to FreeBSD. It’s a full-screen utility requiring root privileges that
shows I/O statistics for all GEOM devices, including virtual devices. With gstat, I/O can be
monitored for individual disk partitions, virtual devices such as RAID geoms, memory drives
and all other GEOM devices.

Examples

The following will continously monitor I/O statistics for first two SCSI drives on FreeBSD:

> iostat -w 1 da0 da1

To see an overview of NFS performance, use:

> nfsstat

116

5.23. DEAL WITH BUSY DEVICES

Practice Exercises

1. Start a “fork bomb” program (usually one can be found in ports/packages/pkgsrc of the
system) and monitor how the system behaves with each of above utilities.

More information

iostat(8), systat(1), vmstat(1), nfsstat(1)

5.23 Deal with busy devices

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand what can cause a process to hang, how to detect related processes and how to fix
the situation.

Introduction

ps: process status
fstat: identify active files
umount: unmount file systems
lsof: list open files

Examples

Practice Exercises

More information

ps(1), fstat(1), kill(1), umount(8) and the third-party lsof utility

5.24 Determine information regarding the operating system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to determine the type and version of the operating system installed.

117

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

Introduction

The uname command can display the type and version of the operating system installed, includ-
ing the system’s hostname, the release level, and the hardware platform name and the processor
architecture name. The -a option will show many details, and is similar to calling uname with
the “-m -n -r -s -v” options.

Note that usually the kernel and userland (like libc, BSD tools and network daemons, et
cetera) are kept in sync so the same version would apply for the operating system as a whole.

TODO: is “sync” term okay here? Maybe improve sentence. And should this mention that
uname is for kernel only?

By default, it shows the name of the operating system:

$ uname
DragonFly
$ uname -s
DragonFly

The machine’s hardware name and processor architecture name can be displayed,
respectively:

$ uname -m
i386
$ uname -p
i386

TODO: add note and example about when -m and -p are different
It can also provide the time and date of the built kernel, the host it was built on, and the path

to the kernel configuration used, for example:

$ uname -v
DragonFly 1.7.0-DEVELOPMENT #0: Fri Oct 27 12:10:01 PDT 2006

jdoe@server5.example.org:/build/usr.obj/usr/src/sys/SERVER

The sysctl tool (introduced in section 5.7) can also show some of this same information,
for example:

$ sysctl kern.ostype
kern.ostype = NetBSD
$ sysctl kern.hostname
kern.hostname = glacier.reedmedia.net
$ sysctl kern.osrelease
kern.osrelease = 3.99.24
$ sysctl kern.version
kern.version = NetBSD 3.99.24 (JCR20060802) #0: Mon Sep 25 12:22:43 CDT 2006

reed@new-host-8:/usr/src/sys/arch/i386/compile/JCR20060802
$ sysctl hw.machine
hw.machine = i386
$ sysctl hw.machine_arch
hw.machine_arch = i386

On NetBSD, an /etc/release file also gives further details to identify the source code used to
build the system.

118

5.25. UNDERSTAND THE ADVANTAGES OF USING A BSD LICENSE

Practice Exercises

TODO

More information

uname(1), sysctl(8); /etc/release on NetBSD

5.25 Understand the advantages of using a BSD license

Author: name ?? ??
Reviewer: Jeremy C. Reed, ?? , NetBSD/FreeBSD/DragonFly/OpenBSD
Reviewer: name ?? ??

Concept

Recognize the 2-clause BSD license and how the license does not place restrictions on whether
BSD licensed code remains Open Source or becomes integrated into a commercial product.

TODO: might as well cover 3- and 4-clause licenses too since a lot still uses that and also
mention the UC removal of advertising clause – note this is important as that only applies to
UCB’s code and not to third-party code included with BSDs that may have used advertising
clause. NetBSD for example continues to use full old style license.

Introduction

Examples

Practice Exercises

More information

119

CHAPTER 5. BASIC SYSTEM ADMINISTRATION

120

6 Network Administration

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

TCP/IP was originally implemented on BSD systems and BSD systems continue to provide
core networking services for a substantial portion of the Internet. Demonstrate a strong under-
standing of both IPv4 and IPv6 addressing as well as basic networking theory. Trainers and
material providers should provide conceptual depth similar to that found in Network+ or in the
networking theory section of CCNA.

• 6

• 6.1

• 6.3

• 6.3

• 6.5

• 6.6

• 6.7

• 6.8

• 6.9

• 6.10

• 6.11

• 6.12

• 6.13

• 6.14

• 6.15

121

CHAPTER 6. NETWORK ADMINISTRATION

6.1 Determine the current TCP/IP settings on a system

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: Sean Swayze swayze@pcsage.biz FreeBSD
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Be able to determine a system’s IP address(es), subnet mask, default gateway, primary and
secondary DNS servers and hostname.

Introduction

If you are a BSD user/administrator you must understand where and how you can get any
information about a system such as its network settings. What interesting information about a
network can we get from the system? We can obtain its IP address, default gateway, the DNS
server, the MAC address of any network interface on the system and other relevant information
related to networking.

TODO: show “hostname” tool
TODO: some BSDs have “route show” or “route get” ...

Examples

Let’s start from IP address and MAC address. We can get this kind of information from
ifconfig -a command. For example

wi0: flags=8802 <BROADCAST,SIMPLEX,MULTICAST> mtu 1500
ether 00:05:3c:08:8f:7e
media: IEEE 802.11 Wireless Ethernet autoselect (none)
status: no carrier
ssid “” channel 1
stationname “FreeBSD WaveLAN/IEEE node”
authmode OPEN privacy OFF txpowmax 100 bmiss 7

fxp0: flags=8843 <UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=8
inet 192.168.1.162 netmask 0xffffff00 broadcast 192.168.1.255
ether 00:09:6b:13:42:9f
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

lo0: flags=8049 <UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
inet6 ::1 prefixlen 128
inet 127.0.0.1 netmask 0xff000000

As we can see the fxp0 interface has IP 192.168.1.162/24 (/24 means that the network mask
is 255.255.255.0 - ffffff00), broadcast address 192.168.1.255, MAC address 00:09:6b:13:42:9f

122

6.1. DETERMINE THE CURRENT TCP/IP SETTINGS ON A SYSTEM

and 100baseTX full-duplex connection to the switch. Also the system has a wifi interface wi0
and also lo0 - the loopback interface.

Next step is to determine the DNS servers and default route.

#netstat -rn
Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGS 0 919 fxp0
127.0.0.1 127.0.0.1 UH 0 0 lo0
192.168.1 link#2 UC 0 0 fxp0
192.168.1.1 00:13:46:56:cf:15 UHLW 2 0 fxp0 1178

That means that the default gateway IP is 192.168.1.1.

> cat /etc/resolv.conf
nameserver 192.168.1.1
nameserver 10.2.2.1
>

resolv.conf has IP addresses of DNS server. For this example the system will first try to
resolve DNS name with 192.168.1.1, secondly with 10.2.2.1(The system will really try to re-
solve DNS name with hosts file, if the name is not in the hosts file system (hosts.conf) try to
resolve it with a DNS server). You can edit resolv.conf on the fly.

Some times system have some static route for hosts on the network. For save this you can
use rc.conf file. And you can update routes on the fly. For example, if you need change
default route. Let’s try changing the default route:

route flush
default 192.168.1.1 done
route add 0.0.0.0 192.168.1.1
add net 0.0.0.0: gateway 192.168.1.1
#

Route flush means that you want flush all routes on your system, instead of this you can use
the route delete command (look at the manual for your system). route add 0.0.0.0 means that
you want add route for 0.0.0.0 network - all networks(also you can do it like that route add
default 192.168.1.1) and 192.168.1.1 it’s IP for your default router.

Practice Exercises

1. Try to access your DNS-servers.

2. List the IP addresses of each interface, the default router, list the DNS servers.

3. Log into your system and verify that the DNS servers correspond to that of your ISP or
your own.

4. Log into your system and verify that you have a valid, IP address and default gateway.

123

CHAPTER 6. NETWORK ADMINISTRATION

More information

ifconfig(8), netstat(1), resolv.conf(5), route(8), hostname(1)

6.2 Set a system’s TCP/IP settings

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD
Reviewer: jdq ?? OpenBSD

Concept

Be able to modify required TCP/IP settings both temporarily and permanently in order to re-
main after a reboot.

Introduction

This chapter one of the most important because you as network administrator must know how
to convert your hardware into real server. In this part you know how to set network settings in
BSD box.

Examples

You can update IP on the fly manually and via DHCP server. You must be a root user for
change IP and other network settings.

TODO: briefly mention DHCP and refer to section 6.14 . TODO: maybe move some of this
to there?

dhclient fxp0
DHCPREQUEST on fxp0 to 255.255.255.255 port 67
DHCPACK from 192.168.1.1
bound to 192.168.1.162 - renewal in 302400 seconds.

Now we update our fxp0 interface IP via DHCP server. You may override default dhclient
options in /etc/dhclient.conf. In environments where a static IP or DHCP is not available, you
must manually configure a network interface:

ifconfig fxp0 192.168.1.162 netmask 255.255.255.0

And check the status of this interface:

ifconfig fxp0
fxp0: flags=8843 mtu 1500

options=8
inet 192.168.1.162 netmask 0xffffff00 broadcast 192.168.1.255
ether 00:09:6b:13:42:9f

124

6.2. SET A SYSTEM’S TCP/IP SETTINGS

media: Ethernet autoselect (100baseTX)
status: active

The -a switch may be used to check the status of all interfaces.
You may save these settings on xBSD, yBSD and FreeBSD by adding an entry to

/etc/rc.conf :

ifconfig_rl1=”inet 192.168.51.50 netmask 255.255.255.0”
ifconfig_rl0_alias1=”inet 192.168.231.2 netmask 255.255.255.0”
ifconfig_rl0_alias0=”inet 10.1.1.1 netmask 255.255.255.252”

For OpenBSD, create an /etc/hostname.rl0 for the rl0 interface in OpenBSD:

192.168.51.50 netmask 255.255.255.0 up”“
inet alias 192.168.231.2 255.255.255.0”“
inet alias 10.1.1.1 255.255.255.252”“

To configure xBSD, yBSD, and FreeBSD to use dhcp on startup:

??

And in OpenBSD, simply use the following entry in /etc/hostname.if:
“dhcp NONE NONE NONE
To bring up an interface according to the configuration files, use netstart:

sh /etc/netstart rl0

DHCP servers often provide a default route. If dhcp is not in use, or a default route is not
provided by the DHCP server, you must configure one manually. In xBSD, yBSD and
FreeBSD, add:

defaultrouter=”192.168.1.1”

to rc.conf. Similarly, in OpenBSD, add an entry to /etc/mygate:

echo 192.168.1.1 > /etc/mygate

you may check the routing table by using

route -n show

The -n option discarding name resolution preventing long delays. You may add a default
entry by keying in:

route add default 192.168.1.1

For update DNS servers list you must update your resolv.conf file. This is typical file

cat /etc/resolv.conf
nameserver 192.168.10.1
nameserver 10.10.10.13

TODO: don’t cover DNS too much here.
For more information about DNS, see section 6.7 and ...TODO.
Firstly system try to resolve address with 192.168.10.1 and then with 10.10.10.13 (truly

firstly with hosts file)

125

CHAPTER 6. NETWORK ADMINISTRATION

Practice Exercises

1. Try to change your IP address

2. Create alias for network interface

3. Add DNS server.

More information

hostname (1), ifconfig(8), route(8), resolv.conf(5), rc.conf(5), hosts(5), hostname.if(5), my-
name(5), mygate(5), netstart(8)

6.3 Determine which TCP or UDP ports are open on a system

Author: Mark Foster mark@foster.cc FreeBSD
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Be able to use the utilities found on BSD systems as well as third-party programs to determine
which ports are open on a system and which ports are being seen through a firewall.

Introduction

netstat: show network status
services: service name database
fstat: identify active files
sockstat: list open sockets
nmap: network exploration tool and security scanner
lsof: list open files
Determine which ports are open on a system:
Locally:

netstat -an
sockstat -cl

Remotely: nmap hostname or IP
Using sockstat:

sockstat -cl

126

6.4. VERIFY THE AVAILABILITY OF A TCP/IP SERVICE

Examples

Practice Exercises

More information

netstat(1), services(5) and fstat(1); sockstat(1) and third-party nmap and lsof

6.4 Verify the availability of a TCP/IP service

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Be able to determine if a remote system is available via TCP/IP, and if so, telnet(1) to a partic-
ular TCP service to determine if it is responding to client requests.

Introduction

Some times you need to check some network service on remote or local system. How can we
do it? Firstly we must check the firewall rule, it’s common error when someone check network
service on remote host when your firewall block this type of request. And then you can start
your test.

Examples

ping it’s a most common tool for check availability host(remember some admins blocks
ping). Instead of Windows system ping in BSD will ping host until you press Ctrl+C.

ping freebsd.org
PING freebsd.org (69.147.83.40): 56 data bytes
64 bytes from 69.147.83.40: icmp_seq=0 ttl=47 time=216.248 ms
64 bytes from 69.147.83.40: icmp_seq=1 ttl=48 time=227.884 ms

Now we ping freebsd.org and know that this server is up. Let’s check service like www and
ssh

telnet freebsd.org 80
Trying 69.147.83.40...
Connected to freebsd.org.
Escape character is ’ˆ]’.
ˆC
Connection closed by foreign host.
telnet freebsd.org 22
Trying 69.147.83.40...

127

CHAPTER 6. NETWORK ADMINISTRATION

Connected to freebsd.org.
Escape character is ’ˆ]’.
SSH-2.0-OpenSSH_4.2p1 FreeBSD-20060930
ˆC
Connection closed by foreign host.

www is work on freebsd.org and ssh is too. Also we can see that freebsd.org support only
ssh 2(if server support 1 and 2 it will show 1.99). Not so hard but very usefull. You can use nc
tool for this - check the manual.

Imagine that ping is filed but your system work fine and network work too. What’s happen?
May be some host in your route to destination service is down. We can check this via
traceroute tool.

traceroute ya.ru
traceroute to ya.ru (213.180.204.8), 64 hops max, 40 byte packets
1 192.168.1.1 (192.168.1.1) 0.431 ms 0.402 ms 0.351 ms
2 vpn13-l0.msk.corbina.net (10.1.1.1) 17.084 ms 22.738 ms 18.418 ms
3 hq-bb-giga2-12.msk.corbina.net (85.21.151.113) 19.142 ms 15.753 ms 29.292 ms
4 yandex-gw.corbina.net (85.21.52.222) 11.958 ms 18.624 ms 22.089 ms
5 ya.ru (213.180.204.8) 21.116 ms 21.629 ms 20.597 ms

In this case all host in route to ya.ru is up.

Practice Exercises

1. Use ping and check some host for availability.

2. Use telnet and check some service for availability.

3. Use traceroute and check your route.

More information

ping(8), traceroute(8), telnet(1); nc(1) on FreeBSD and OpenBSD

6.5 Query a DNS server

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: Mark Foster mark@foster.cc FreeBSD
Reviewer: Sean Swayze swayze@pcsage.biz FreeBSD/OpenBSD

Concept

Understand basic DNS theory, including types of resource records, types of DNS servers, re-
verse lookups and zone transfers. Be able to query a DNS server for a particular type of
resource record, understand which servers are authoritative for a zone and determine if a DNS
server is willing to do a zone transfer.

128

6.5. QUERY A DNS SERVER

Introduction

The Domain Name System (DNS) stores information mainly for mapping Internet host names
to IP addresses and vice versa, as well as mail routing information. It can also store many other
types of information not covered here, utilized by different Internet applications.

The DNS system stores data in a tree-like hierachy starting from a root node, through subn-
odes to host node. Every node of the tree is called a domain and is given a label. Every domain
except the root is also a subdomain . The domain name of the node is the concatenation of all
the labels on the path from the node to the root node separated by dots. It is written starting
from the host node on left, with the root node located on right, ie. mail.example.com where
mail is a host node and example is a subdomain of a top level domain com.

Everytime we’re buying a domain, we’re actualy buying a subdomain of one of the global
domains like:

• generic top level domains gTLD (ie. com, org, net) or

• country code top level domains ccTLD (ie. uk, de, pl, fr).

It may even be some second level domain like co.uk, org.pl, net.de.
For administrative purposes, the name space in the DNS system is partitioned into areas

called zones , each starting at a node and extending down to the leaf nodes or to nodes where
other zones start. The data for each zone is stored in a name server , which answers queries
about the given zone.

A zone consists of those parts of the domain tree for which a name server has complete
information and over which it has authority. It contains all domain names from a certain point
downward in the domain tree except those which are delegated to other zones. A delegation
point is marked by one or more NS records in the parent zone, which should be matched by
equivalent NS records at the root of the delegated zone.

Resource Records

The data associated with each domain name is stored in the form of resource records (RR). The
most commonly met types of RRs in IPv4 networks are:

• A - a host IP address located in the IN class.

• CNAME - a canonical name identifier for creating aliases.

• MX - a mail exchange identifier for given domain.

• NS - the authoritative name server for the domain.

• PTR - a pointer to another part of the domain name space.

• SOA - identifies the start of a zone of authority.

129

CHAPTER 6. NETWORK ADMINISTRATION

Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete
data for the zone. Most zones have at least two authoritative servers to make the DNS system
immune to server and network failures.

Responses from the authoritative servers have the “authoritative answer” (AA) bit set in the
response packets.

The authoritative server where the master copy of the zone data is maintained is called the
primary master server . It holds zones configured manually by an administrator. The other
authoritative servers known as the slave servers or secondary servers load the zone contents
from another server using a replication process known as a zone transfer .

Caching Name Servers

To improve performance, recursive servers cache the results of the lookups they perform on
behalf of DNS clients. This may be a query of a web browser as well as of a host(1) command.
The terms recursive server and caching server are often used synonymously, and for needs of
this document they’ll be treated as synonymous.

Examples

(Note: Basic information on reverse DNS queries is covered in section 6.6)
In BSD systems there are three basic DNS query tools: host(1) , dig(1) and nslookup(1) .

host(1)

Performing general DNS lookup with host(1) is pretty straighforward:

$ host google.com
google.com has address 64.233.167.99
google.com has address 64.233.187.99
google.com has address 72.14.207.99
google.com mail is handled by 10 smtp1.google.com.
google.com mail is handled by 10 smtp2.google.com.
google.com mail is handled by 10 smtp3.google.com.
google.com mail is handled by 10 smtp4.google.com.

Sometimes it is required to check what information on given domain can be retrieved from
some other name server. This can be done by specifying queried DNS server’s name or IP
address after the domain name we’re gathering information on.

$ host google.com 192.168.86.1
Using domain server:
Name: 192.168.86.1
Address: 192.168.86.1#53
Aliases:
google.com has address 72.14.207.99
google.com has address 64.233.167.99

130

6.5. QUERY A DNS SERVER

google.com has address 64.233.187.99
google.com mail is handled by 10 smtp2.google.com.
google.com mail is handled by 10 smtp3.google.com.
google.com mail is handled by 10 smtp4.google.com.
google.com mail is handled by 10 smtp1.google.com.

Of course, information on IP addresses and mail exchange servers is not always what we’re
looking for. Thus, querying for given resource record is also available – with the -t flag.

$ host -t SOA google.com
google.com has SOA record ns1.google.com. dns-admin.google.com. 2007010801 7200 1800 1209600 300

Finally, we’d like to get as much information as possible.

$ host -a google.com ns2.google.com
Trying “google.com”
Using domain server:
Name: ns2.google.com
Address: 216.239.34.10#53
Aliases:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44983
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 4, ADDITIONAL: 8
;; QUESTION SECTION:
;google.com. IN ANY
;; ANSWER SECTION:
google.com. 300 IN A 72.14.207.99
google.com. 300 IN A 64.233.187.99
google.com. 300 IN A 64.233.167.99
google.com. 300 IN TXT “v=spf1 ptr ?all”
google.com. 10800 IN MX 10 smtp1.google.com.
google.com. 10800 IN MX 10 smtp2.google.com.
google.com. 10800 IN MX 10 smtp3.google.com.
google.com. 10800 IN MX 10 smtp4.google.com.
google.com. 345600 IN NS ns1.google.com.
google.com. 345600 IN NS ns2.google.com.
google.com. 345600 IN NS ns3.google.com.
google.com. 345600 IN NS ns4.google.com.
google.com. 86400 IN SOA ns1.google.com. dns-admin.google.com. 2007010801 7200 1800 “”1209600 300
;; AUTHORITY SECTION:
google.com. 345600 IN NS ns1.google.com.
google.com. 345600 IN NS ns2.google.com.
google.com. 345600 IN NS ns3.google.com.
google.com. 345600 IN NS ns4.google.com.
;; ADDITIONAL SECTION:
smtp1.google.com. 3600 IN A 216.239.57.25
smtp2.google.com. 3600 IN A 64.233.167.25
smtp3.google.com. 3600 IN A 64.233.183.25
smtp4.google.com. 3600 IN A 72.14.215.25

131

CHAPTER 6. NETWORK ADMINISTRATION

ns1.google.com. 345600 IN A 216.239.32.10
ns2.google.com. 345600 IN A 216.239.34.10
ns3.google.com. 345600 IN A 216.239.36.10
ns4.google.com. 345600 IN A 216.239.38.10
Received 494 bytes from 216.239.34.10#53 in 100 ms

Please notice the presence of AA bit in response packet:

;; flags: qr aa
rd; QUERY: 1, ANSWER: 13, AUTHORITY: 4, ADDITIONAL: 8

The host(1) utility – as simple as it may seem – allows also preforming a zone transfer
using AXFR query.

$ host -t AXFR google.com ns2.google.com
Trying “google.com”
Using domain server:
Name: ns2.google.com
Address: 216.239.34.10#53
Aliases:
Host google.com not found: 5(REFUSED)
; Transfer failed.

As we can see, queried name server refused a zone transfer which marks potentially well
configured DNS server.

dig(1)

To be continued...

Practice Exercises

1. Check the result of host(1) command along with flags: -d , -v , -C , and -l .

More information

dig(1), host(1), nslookup(1), ping(8), telnet(1)

6.6 Determine who is responsible for a DNS zone

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: ceri ceri@FreeBSD.org FreeBSD||OpenBSD
Reviewer: name ?? ??

Concept

Be able to perform a reverse DNS lookup to determine the network associated with an IP
address and gather contact information regarding that network.

132

6.6. DETERMINE WHO IS RESPONSIBLE FOR A DNS ZONE

Introduction

(Note: Basic information on DNS system is covered in section 6.5)
Being a BSD system administrator requires the knowledge of obtaining contact information

of persons responsible for a given DNS zone. This is most commonly achieved through a
reverse DNS lookup or a whois query.

Examples

Having only an IP address, the first step is to perform a reverse DNS lookup for a given ad-
dress to obtain information on domain to which this machine belongs to. Both the dig(1) and
whois(1) commands can be used for this purpose.

A reverse DNS lookup can be performed using the -x flag to the dig(1) command. The
information that we’re looking for is located within the SOA record.

dig SOA -x 216.239.32.10

; <<>> DiG 9.3.3 <<>> SOA -x 216.239.32.10
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36277
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION:
;10.32.239.216.in-addr.arpa. IN SOA
;; AUTHORITY SECTION:
32.239.216.in-addr.arpa. 10300 IN SOA ns1.google.com. dns-admin.google.com. 2006113000 21600 3600 1209600 10800
;; Query time: 2 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Jan 4 23:36:06 2007
;; MSG SIZE rcvd: 104

One of the pieces of information obtained with this command is a contact e-mail address for
the person responsible for a given DNS zone. This is located just after the hostname of the
primary DNS server for the zone and is shown with a . (dot) instead of the usual @ character.
In this case it is dns-admin.google.com which should be read as dns-admin@google.com.

The whois(1) command does not require any additional parameters to perform a lookup
and it provides far more detailed contact information.

whois 216.239.32.10

OrgName: Google Inc.
OrgID: GOGL
Address: 1600 Amphitheatre Parkway
City: Mountain View
StateProv: CA
PostalCode: 94043
Country: US
NetRange: 216.239.32.0 - 216.239.63.255

133

CHAPTER 6. NETWORK ADMINISTRATION

CIDR: 216.239.32.0/19
NetName: GOOGLE
NetHandle: NET-216-239-32-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.GOOGLE.COM
NameServer: NS2.GOOGLE.COM
NameServer: NS3.GOOGLE.COM
NameServer: NS4.GOOGLE.COM
Comment:
RegDate: 2000-11-22
Updated: 2001-05-11
RTechHandle: ZG39-ARIN
RTechName: Google Inc.
RTechPhone: +1-650-318-0200
RTechEmail: arin-contact@google.com
OrgTechHandle: ZG39-ARIN
OrgTechName: Google Inc.
OrgTechPhone: +1-650-318-0200
OrgTechEmail: arin-contact@google.com
ARIN WHOIS database, last updated 2007-01-03 19:10
Enter ? for additional hints on searching ARIN’s WHOIS database.

Notice that the format of the whois output depends on many factors, such as the registry
for the IP address block, but each gives similarly detailed information. Notice also, that the
information gained from a whois query on an IP address may differ from the information
gained when querying a domain name pointing to the very same IP address. Most commonly
this occurs when the domain is administered by a different organization than the IP address
block.

Practice Exercises

1. Using both commands, check the contact information available for your domain.

2. Add different server names or addresses (ie. your own, your ISP’s) to the dig @server
parameter.

3. Perform a whois query on your domain name and IP address.

More information

dig(1) and whois(1)

6.7 Change the order of name resolution

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD

134

6.8. CONVERT A SUBNET MASK BETWEEN DOTTED DECIMAL, HEXADECIMAL
OR CIDR NOTATION

Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Be able to determine the default order of host name resolution on BSD systems and recognize
which configuration file controls the order of host name resolution.

Introduction

Most programs (like ping and traceroute) that do a hostname lookup use the gethostbyname(3)
or getaddrinfo(3) functions. Commonly the local file /etc/hosts is used first and then normal
DNS lookups are done if needed. (The /etc/hosts file is introduced in section TODO.)

Note that ping or telnet can be used to show hostname lookups as the systems sees them.
On NetBSD and FreeBSD, the “name-service switch dispatcher” configured in

/etc/nsswitch.conf is used to select which sources for hostname lookups to use and what order
to use them. The possible sources are “files” for /etc/hosts, “dns” to use DNS, and “nis” to use
NIS (aka “YP”). For example:

$ grep ˆhosts /etc/nsswitch.conf
hosts: files dns

On OpenBSD, the /etc/resolv.conf has an additional “lookup” keyword which defines the
ordering of the databases to use, such as “bind” for using DNS (network-based), “file” for
searching in /etc/hosts, and “yp” for retrieving from a YP server. If the /etc/resolv.conf file
doesn’t exist on OpenBSD, then the only the /etc/hosts file is used. If the /etc/resolv.conf file
does exist but does not define the “lookup”, then the default “lookup” order is: “bind file”.

TODO: DragonFly has host.conf and nsswitch.conf – verify what is used
When using normal DNS lookups, the DNS servers are defined in /etc/resolv.conf. This is

covered in section TODO.
Note that a few programs – like “dig” and “nslookup” – do the DNS lookups directly because

they are more specific.

Examples

Practice Exercises

More information

ping(8), telnet(1), nsswitch.conf(5), resolv.conf(5), host.conf(5)

6.8 Convert a subnet mask between dotted decimal,
hexadecimal or CIDR notation

Author: ?? andreas dot kuehl at clicktivities dot net ?? FreeBSD

135

CHAPTER 6. NETWORK ADMINISTRATION

Reviewer: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Be familiar with IPv4 addressing and how to convert a subnet mask from a given notation to
another specified notation.

Introduction

All of the internet address space is divided into subnets. In the old times, there were class A,
class B and class C nets. A subnet means, that you divide an IPv4 address in a front part and a
back part. The front part is common in the subnet, all addresses of a subnet have the same front
part. All computers/devices in the subnet are distinguished by different values for the back part.
A class A net had the first byte of an IPv4 address common and could contain 255*255*255
(16,581,375) addresses, a class B net had the first two bytes common and contained 255*255
(65,025) addresses while as you can guess, a class C net had the first three bytes common and
contained 255 addresses. Nowadays, the address space is precious and nobody wants to block
a complete class C net for only 6 addresses. Until 1993, the internet routers did not know how
to distinguish, whether a certain address was contained in a class A, B or C net. Instead, certain
blocks of IP addresses contained only class C nets and other blocks contained only class B or
class A nets. Since 1993 the borders of net sizes are free. Additionally, the length of the first
part of an IPv4 address is not bound any more to the byte and could be somewhere.

There are three commonly known and used methods to write the so called subnetmask, which
shows the border between front or prefix and back part.

(You need to know how to convert between decimal, hexadecimal, and binary numbers. If
you can not do so, go elsewhere and learn!)

255.255.255.0 dotted decimal
ff.ff.ff.00 hexadecimal
/24 CIDR

Every of this netmasks work on the binary representation of an IP address.

192.168.6.4 is a decimally written address.
11000000 10101000 00000110 00000100 is the binary representation of the same address.

If you convert the dotted decimal or hexadecimal form to binary, you will get something
like this.

11111111 11111111 11111111 00000000

If you count from left to right, you count 24 times figure 1.
Dotted decimal and hexadecimal are two different representations for the same system. If

you convert them, you get the same. The CIDR form says just: count from left to right.
But know, what does it mean And what do we do with it?

136

6.9. GATHER INFORMATION USING AN IP ADDRESS AND SUBNET MASK

Let’s say you obtained a class C net for your company and have to divide it for several
purposes...

(To be continued :-)

Examples

Practice Exercises

More information

http://www.faqs.org/rfcs/rfc791.html http://www.faqs.org/rfcs/rfc1519.html http://en.wikipedia.org/wiki/ClasslessInter-
Domain Routing

6.9 Gather information using an IP address and subnet mask

Author: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

Concept

Given an IPv4 address and subnet mask, be able to determine the subnet address, broadcast
address and the valid host addresses available on that subnet address.

Introduction

Configuring BSD to work in network environment requires proficiency in operating on IP ad-
dresses and subnet masks. To understand different subnet mask’s notations used throughout
this section please refer to ?? .

Examples

Having a host with an IP address of 192.168.1.25/24 we can determine without any further
calculations:

subnet identifier: 192.168.1.0
broadcast address: 192.168.1.255
number of valid host addresses: 254

The subnet mask of /24 in CIDR notation stands for 255.255.255.0. The IPv4 uses a 32-bit
IP addressing and network masks, which means that the above subnet mask have last eight
bits set to zero (32 - 24 = 8), which also mean that we have 2ˆ8 IP addresses available.
Subtracting two addresses for subnet address (first address) and broadcast address (last
address) we get number of valid hosts:

2ˆ8 - 2 = 256 - 2 = 254

137

CHAPTER 6. NETWORK ADMINISTRATION

As for the address of 192.168.1.25/28 the paremeters in question are:

subnet identifier: 192.168.1.16
broadcast address: 192.168.1.31
number of valid host addresses: 14

This is quite more interesting example. Having a CIDR subnet mask of /28 (four bits set to
zero)–which is 255.255.255.240 in dotted decimal notation–means that there are 16 addresses
available, and only 14 of them are valid host addresses:

2ˆ4 - 2 = 16 - 2 = 14

For networks smaller than 256 IP addresses there’s a simple way to determine number of
available addresses using a ’neat trick’ as described in Daryl’s TCP/IP Primer (link at the end
of this subject). To do so we can simply subtract the last number of the subnet mask from
256. For aformentioned subnet mask of 255.255.255.240 we’ll have 256 - 240 = 16 addresses.
Now, dividing the result into 256 we can determine the number of subnets (256 / 16 = 16),
which gives us a 16 subnets of 16 addresses each. The scope of the first one is 192.168.1.0
- 192.168.1.15, the second one 192.168.1.16 - 192.168.1.31 and so forth. Our IP address of
192.168.1.25 is located within the second one.

To make it all more confusing let’s try to determine subnet’s parameters having a
192.168.1.25/22 IP address:

subnet identifier: 192.168.0.0
broadcast address: 192.168.3.255
number of valid host addresses: 1022

The CIDR subnet mask of /22 gives us 10 bits defining the hosts addresses.

2ˆ10 - 2 = 1024 - 2 = 1022

This gives us networks with a scope of IP addresses: 192.168.0.0 - 192.168.3.255,
192.168.4.0 - 192.168.7.255, etc.

In closing, the partial reference table on IPv4 subnets:

CIDR | Netmask | Addresses
---+-----------+-------
/18 | 255.255.192.0 | 16384
/19 | 255.255.224.0 | 8192
/20 | 255.255.240.0 | 4096
/21 | 255.255.248.0 | 2048
/22 | 255.255.252.0 | 1024
/23 | 255.255.254.0 | 512
/24 | 255.255.255.0 | 256
/25 | 255.255.255.128 | 128
/26 | 255.255.255.192 | 64
/27 | 255.255.255.224 | 32
/28 | 255.255.255.240 | 16
/29 | 255.255.255.248 | 8
/30 | 255.255.255.252 | 4

138

6.10. UNDERSTAND IPV6 ADDRESS THEORY

/31 | 255.255.255.254 | 2
/32 | 255.255.255.255 | 1

Note that the /32 subnet mask actually points to only one host, and /31 subnet is simply
useless as there are no addresses left for hosts.

Practice Exercises

1. Determine subnet identifier, broadcast address and number of valid host addresses hav-
ing: 192.168.86.2/24, 10.0.9.7/26, 192.168.159.8/25, and 172.16.0.189/18.

More information

http://www.ipprimer.com/bitbybit.cfm

6.10 Understand IPv6 address theory

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to recognize basic IPv6 addressing theory including: the components of an IPv6 ad-
dress; the support for multiple addresses (link, local, global) per interface; address and prefix
representation (aaaa:bbbb::dddd/17) and the address format (48bit prefix, 16bit subnet, 64 host-
bits). In addition, understand the autoconfiguration process where the router sends its prefix or
gets queried and the host adds its 64 host-bits which are derived from its MAC address. Finally,
be able to troubleshoot basic IPv6 connectivity.

Introduction

Examples

Practice Exercises

More information

ifconfig(8), ping6(8), rtsol(8)

6.11 Demonstrate basic tcpdump(1) skills

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

139

CHAPTER 6. NETWORK ADMINISTRATION

Concept

Given some tcpdump(1) output, an admin should be able to answer basic network connectivity
questions. Recognize common TCP and UDP port numbers, the difference between a TCP/IP
server and a TCP/IP client, and the TCP three-way handshake.

Introduction

You are having problems connecting to an application server that is on the network. What to
do and how do you start. One place to start is to see what traffic is going between the nodes.
Tcpdump is a utility that comes with *BSD that will enable you to see what traffic is happening.

Examples

Let’s say that you know that there are people having trouble getting a DHCP address on the
network but there are more than one person having problems so now you wonder if it is the
server that isn’t responding. Or perhaps it’s a problem on the network itself. Using the
command tcpdump dst port bootpc we can see what traffic is happening.

[root@pmax namedb]# tcpdump dst port bootpc
tcpdump: listening on le0
12:14:03.941390 pmax.smithclan.prv.bootps > dhcp-ip97.smithclan.prv.bootpc: xid:0x44e7 C:dhcp-ip97.smithclan.prv Y:dhcp-ip97.smithclan.prv S:pmax.smithclan.prv [|bootp]

Practice Exercises

More information

tcpdump(1)

6.12 Manipulate ARP and neighbor discovery caches

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Understand basic ARP theory as well as the neighbor discovery cache used on IPv6 networks.
Be able to view, modify and clear these caches and recognize when it is necessary to do so.

Introduction

arp: address resolution display and control
ndp: control/diagnose IPv6 neighbor discovery protocol
how arp works:
machine1 asks broadcast “who has x.x.x.x?”

140

6.13. CONFIGURE A SYSTEM TO USE NTP

broadcast request gets forwarded to all listeners
machine2 answers broadcast request with “machine2 has x.x.x.x”
view arp cache:

arp -a
ndp -a

modify arp cache:

arp -s hostname ether_addr (adds arp entry)
arp -d hostname (deletes arp entry)
ndp -s nodename ether_addr [temp] [proxy]
ndp -d hostname

clear arp cache:

arp -d -a (combining -d[elete] with -a[ll] deletes all entries)
ndp -c (erases all ndp entries)

Examples

Practice Exercises

More information

arp(8), ndp(8)

6.13 Configure a system to use NTP

Author: Grzegorz CzapliÅski gregory at systemics dot pl FreeBSD
Reviewer: Cezary Morga cm@therek.net FreeBSD
Reviewer: name ?? ??

Concept

Be familiar with the concepts in RFC 868, the importance of synchronizing time on server
systems and which services in particular are time sensitive. Be able to configure NTP and
manually synchronize with a time server as required.

Introduction

TODO: following are some contributed notes. Some can be removed as refer to too advanced.
Also may be FreeBSD-specific.

ntpd: Network time protocol (NTP) daemon
ntp.conf: NTP daemon configuration file (/etc/ntp.conf)
ntpdc: special NTP query program
ntpq: standard NTP query program

141

CHAPTER 6. NETWORK ADMINISTRATION

ntpdate: set the date and time via NTP
files:
/etc/ntp.conf default name of the configuration file
/etc/ntp.drift default name of the drift file
/etc/ntp.keys default name of the key file
/usr/local/etc/ntp.keys private md5 keys
/ntpkey RSA private key
/ntpkey_host RSA public key
ntp_dh Diffie-Hellman agreement parameters
which services are time sensitive:
configuring NTP:
/etc/ntp.conf:

server ntp-1.cso.uiuc.edu iburst prefer
server ntp1.cs.wisc.edu iburst
server neptune.sg.depaul.edu iburst

(TODO: use generic example host names or use pool.)

driftfile /var/db/ntp.drift
restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap

To start ntpd the first time without rebooting:

ntpd -p /var/run/ntpd.pid

After already started:

/etc/rc.d/ntpd [start | stop | restart | etc...]

Manually synchronize NTP:

ntpd -q

Examples

Practice Exercises

More information

ntpd(8), ntpd.conf(5), rc.conf(5), rdate(8)

6.14 View and renew a DHCP lease

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

142

6.15. RECOGNIZE WHEN AND HOW TO SET OR REMOVE AN INTERFACE ALIAS

Concept

An admin should have a basic understanding of DHCP leases and how to configure a client
to override the settings received from a DHCP server. In addition, be able to view the current
lease, release it and renew a lease. Since the DHCP client used varies, be familiar with using
the DCHP client commands on each BSD.

Introduction

dhclient: Dynamic Host Configuration Protocol (DHCP) client
dhclient.leases: DHCP client lease database
dhclient.conf: DHCP client configuration file
dhcp-options(5): DHCP configuration options
files:
/etc/dhclient.conf
/sbin/dhclient
/sbin/dhclient-script
/var/db/dhclient.leases
configure a client to override the settings received from a DHCP server: use require or

supersede options in dhclient.conf
view the current lease (FreeBSD?):

less /var/db/dhclient.leases.if_name

release the current lease:

dhclient -r

renew a lease:

dhclient ifname

Examples

Practice Exercises

More information

dhclient(8), dhclient.leases(5), dhclient.conf(5), rc.conf(5)

6.15 Recognize when and how to set or remove an interface
alias

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

143

CHAPTER 6. NETWORK ADMINISTRATION

Concept

Recognize when it is appropriate to set or remove an interface alias and the available commands
on each of the BSDs.

Introduction

Multiple IP addresses can be assigned to a network interface using the ifconfig tool using the
“alias” parameter. (An introduction to ifconfig is in sections 6 and ?? .)

Interface aliases are useful for doing virtual hosting , changing network addresses, or for
accepting packets for old interfaces.

TODO: Note: do not use “down” for an alias as it takes the entire interface down.
TODO: mention setting up route? examples? what systems need that route done also?

Examples

Set an interface alias:

ifconfig ifname
inet x.x.x.x
netmask 0xffffffff add

OR

ifconfig ifname
inet x.x.x.x
netmask 0xffffffff alias

Add to /etc/rc.conf (FreeBSD):

ifconfig_ed0_alias0=”inet 127.0.0.253 netmask 0xffffffff”

Remove an interface alias:

ifconfig ifname
inet x.x.x.x
-alias

Remove the line from rc.conf

Practice Exercises

More information

ifconfig(8), rc.conf(5), ifaliases(5), hostname.if(5)

144

7 Basic Unix Skills

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: Yannick Cadin yannick@diablotin.fr FreeBSD/OpenBSD

BSD has its roots in Unix and many Unix utilities were originally developed on BSD sys-
tems. Demonstrate proficiency in the most commonly used Unix command line utilities.

• 7.1

• 7.1

• 7.3

• 7.4

• 7.5

• 7.7

• 7.8

• 7.9

• 7.10

• 7.11

• 7.12

• 5.15

• 7.13

• 7.14

• 7.6

• 7.14

• 7.16

145

CHAPTER 7. BASIC UNIX SKILLS

7.1 Demonstrate proficiency in using redirection, pipes and
tees

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to to redirect standard input, output or error, use a pipe to send the output of one
command to another command or file, and use a tee to copy standard input to standard output.

Introduction

tee: pipe fitting, this utility copies standard input to standard output, making a copy in zero or
more files. The output is unbuffered.

file descriptors (fd):
fd 0: stdin
fd 1: stdout
fd 2: stderr
<: redirect stdin of a process so that input is read from a file instead of from the keyboard
command < infile
>: redirects stdout to a file
command > outfile
>>: appends stdout to a file
command >> outfile
| : piping command output to another command
command1 | command2 | ... | commandN
tee: lets you divert a copy of the data passing between commands to a file without changing

how the pipeline functions
who | tee savewho | wc -l
>&: temporarily connect something to something else
ls 2>&1 means temporarily connect stderr to stdout
|&:

Examples

Practice Exercises

More information

<, >, |, tee(1), >\& and |\&

146

7.2. RECOGNIZE, VIEW AND MODIFY ENVIRONMENT VARIABLES

7.2 Recognize, view and modify environment variables

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to view and modify environment variables both temporarily and permanently for each
of the default shells found on BSD systems.

Introduction

Environment variables are key-value pairs available to executing processes. By way of envi-
ronment variables, users (and other processes) can pass data to new processes. Both keys and
values can only be strings, and both are usually case sensitive. In shell scripts interpreted by
/bin/sh (as well as many others), environment variable contents are referenced by ${KEY}.

Some environment variables need only to be set, without regards for their content (one ex-
ample is the DEBUG variable), and there are usually command shortcuts for this operation.

Most shells have their own internal variables, which should not be confused with global
environment variables as they are not passed to newly started processes.

Different shells have different commands for manipulating environment variables. Read
more about their syntax in the appropriate manual pages.

sh, bash

Internal shell variables can be set simply by issuing a statement like “key=value“, and inspected
with the set command.. An internal variable can then be promoted to a global environment
variable with the export command. Internal shell variables can be deleted with unset. If the
internal variable was exported at the time, it will also be deleted from the environment.

Shell variables are only valid within a shell process instance (spawned subshells will not
contain their parent’s internal variables).

In order to just set an environment variable with empty content, use the form “export NAME“
without defining the internal shell variable.

csh, tcsh

Internal shell variables can be set and inspected with the set command, and environment vari-
ables by the setenv command. Internal shell variables can be deleted with unset, and environ-
ment variables deleted with unsetenv command.

To set an environment variable to empty content, use setenv NAME.

Common environment variables

There are environment variables which have well defined meanings for a Unix process. Some
of them are:

147

CHAPTER 7. BASIC UNIX SKILLS

• USER : Currently logged-in user (e.g. username)

• HOME : Currently logged-in user’s home directory (e.g. /home/ivoras)

• TERM : Active terminal (console) type (e.g. xterm)

• EDITOR : User’s preferred text file editor (e.g. vi)

• VISUAL : User’s preferred visual file editor (e.g. emacs)

• PAGER : User’s preferred pager (e.g. /usr/bin/more)

• PATH : User’s search path for executables (e.g. /bin:/usr/bin:/usr/local/bin)

Examples

Automatically set and export an environment variable called “VEGETABLE” to “Carrot”, in
bash :

$ export VEGETABLE=Carrot

Create an environment variable called “VEHICLE” containing the string “Truck”, in tcsh :

> setenv VEHICLE Truck

List environment variables, in tcsh :

> setenv

Note that (ba)sh uses “=” to set enviroment variables, and (t)csh doesn’t.

Practice Exercises

1. Investigate what does PWD environment variable do

2. Experiment with setting the PAGER environment variable and the behavior of the manual
page viewer (man)

3. Investigate how does internal variable shlvl behave in (t)csh when spawning subshells

4. Unset the PATH environment variable and see if you can start programs without speci-
fying their full path

More information

env(1), sh(1), csh(1), tcsh(1), environ(7)

148

7.3. BE FAMILIAR WITH THE VI(1) EDITOR

7.3 Be familiar with the vi(1) editor

Author: Fred Crowson ?? OpenBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

The default editor on BSD systems is often vi(1) and many system utilities require familiarity
with vi(1) commands. Be able to edit files using this editor, as well as modify a read-only file
or exit vi(1) without saving any edits to the file.

Introduction

ex, Bill Joy. ??
The vi editor is a screen oriented text editor. ex) is a line oriented text editior. Both ex and

vi are different interfaces to the same program.
FreeBSD, NetBSD, OpenBSD and DragonFlyBSD all use the nex/nvi versions of the ex/vi

text editors, these are bug-for-bug compatible replacements for the original Fourth Berkeley
Software Distribution (4BSD) ex and vi programs.

As stated above vi is a screen editor, in practice this means that it takes almost the entire
screen. The sreen is mainly a display of the lines in a file, except for the last line which is used
for you to give commands to vi. vi is a modeful editor. This means that you are either entering
commands or entering text. You need to be in the correct mode to do one or the other.

vi commands can be broken down into four types of commands:

1. Command-Line options

2. Movement Commands

3. Editing Commands

4. Exit Commands

Command-Line Options

The command-line options are those used to invoke the vi editior, such as starting vi to edit a
file called filename. If the file does not exist it will be created, thus if you edit a file with vi
and it opens an empty file then chances are you have mistyped the file name.

$ vi filename
This invokes vi on filename

If you wanted to invoke vi in read-only mode you have two options, either invoke with the
-R switch, or use view:

149

CHAPTER 7. BASIC UNIX SKILLS

$ vi -R filename
Open filename read-only

$ view filename
Open filename read-only

All the switches are documented in the man page. But two useful switch when invoking vi
are + and +n as illustrated below:

$ vi + filename
Open filename at last line

$ vi +n filename
Open filename at line number n

Exit Commands

Before dealing with the movement and editing commands we will look at the exit commands,
the reason for this is that if you open a file by mistake or wrongly edit a file it is useful to know
how to recover the situation.

To that end the first exit command to mention is:

:q! exit vi forcing all edits to be thrown away.

This is important as vi normally tries to save all edits to files. If you just use :q which is quit
file in vi you will be warned if modifications have been made.

:q quit file

To save the file you use :w and this can be combined with the quit command to write and
exit the file:

:wq write (save) and quit file

The ZZ command performs the same function as :wq in that the file is saved, if modified,
and then vi quits that file.

If you are in command mode typing i or a with put you in editing mode. i inserts text before
the cursor and a inserts text after the cursor. To exit editing mode you just press the Esc key.
Once you have started editing a file it is useful to use the showmode command, this will tell
you if you are in command or edit mode:

:set showmode
This will put either the words Command, Insert or Append on the right hand side of the command line at the bottom of the vi window, and reminding you which mode you are in.

Movement Commands

vi provides many methods of moving around the file, from character level to moving by
screens, and using search to move around the file. This section will give a brief overview of
the many movement commands that are available in vi. Character level movement is achieved
with:

150

7.3. BE FAMILIAR WITH THE VI(1) EDITOR

h
Left

j
Down

k
Up

l
Right

Character level movement can also be achieved using the arrow keys on the keyboard.
Moving around a file at the character level is not always the most efficient method, however
you can backwards and forwards through the file by word beginnings and endings:

w
or W
move forward by word

b
or B
move backwards by word

e
or E
move forward to the end of a word

At the line level:

0
first position of current line

$
last position of current line

ˆ
first non-blank character of current line

+
first non-blank character of next line

-
first non-blank character of the previous line

Movement through the file can also be achieved by line numbers, where Ctrl-G will display
your current line number. n G will move you to line n , and G will move you to the last line of
the file. You can also use the ex command for moving to a particular line by doing :n where n
is the line number to move to.

Before leaving the section on movement around files, another useful way to move around a
file is using vi search capabilities. By typeing /pattern or ?pattern vi will search forwards (/
) for pattern or backwards (?) through the file. Similarly to repeat the previous search just
entering / for a forward search and ? for a backwards search. n will repeat a search in the same
direction, and N will repeat the search in the opposite direction.

Editing Commands

vi editing commands cover inserting text, changing text, deleting or moving text and yanking
(vi version of copying) text. i and a have been mentioned above. When they are capitalized

151

CHAPTER 7. BASIC UNIX SKILLS

you get:

I
insert text before beginning of line
A
insert text after end of line

Changing text can be achieved at the character, word, line and even greater levels.

r
replace character under cursor
e.g. typing rt would replace the character with a ’t’

cw
change the word

cc
change current line

C
change to end of line

R
overwrite characters

s
delete character and insert new text

S
delete current line and insert new text

To copy words or lines in vi they are Yanked using:

yw
yank a word

yy
yank current line

Yanked words can then be pasted using:

p
put yanked text after cursor

P
put yanked text before cursor

The deletion commands in vi, can also be used to move text around a file as vi puts the
deleted text in a buffer which can then be put elsewhere in the file by using the p and P
commands.

dd
delete current line

dw
delete word

x
delete character under cursor

X
delete character before cursor

152

7.3. BE FAMILIAR WITH THE VI(1) EDITOR

Finally there are four other editing commands that are worth a quick mention:

.
repeat the last edit command

J
join two lines together

u
undo last edit

U
restore current line

Examples

:w
write (save) file

:wq
write (save) file and quit

:wq!
write (save) file, quit and ignore warnings

q!
exit vi forcing all edits to be thrown away

dd
delete line under cursor

y
yank line under cursor (save to buffer)

p
put buffer in current cursor position

x
delete character under cursor

i
enter insert mode

a
enter append mode (insert after cursor)

/
enter search mode

/pattern
would search forward for pattern
:

enter ex command
:r

read file into current cursor position
:r filename

would insert the contents of filename
into current file
ZZ

save and exit vi
:set number

153

CHAPTER 7. BASIC UNIX SKILLS

display line numbers
:set list

display line end (displays $ at the end of each line)

Practice Exercises

1. Starting the editor

2. Getting out of the editor

3. Moving around in the file (including Arrow keys)

4. Making simple changes

5. Writing, quitting, editing new files

More information

vi(1) including: :w, :wq, :wq!, :q!, dd, y, p, x, i, a, /, :, :r, ZZ, :set number, :set list
??
??
??
??
Learning the vi Editor by Linda Lamb & Arnold Robbins is a useful text from ?? . In

addition there are many tutorials available on the internet.

Vi Security

While using the vi editor you can escape to a shell, using :sh , or execute comands using :!
cmdname , thus if you allow users to edit configuatation files using sudo, you might well be
giving them root access.

Vi Clones

There are many vi clones that add functionality, such as Vim ?? and Elvis ?? . The advantage
of these clones is that they often have GUI’s and run on other OSes so you can use for favourite
editor (vi of course ; D) where ever you go.

7.4 Determine if a file is a binary, text, or data file

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

154

7.4. DETERMINE IF A FILE IS A BINARY, TEXT, OR DATA FILE

Concept

While BSD systems use naming conventions to help determine the type of file, an administrator
should be aware that these are conventions only and that there is a magic database to help
determine file type.

Introduction

File types are really not well defined in Unix, and (not going into discussion about special
file-like system objects) there are really only three types of files that are recognized by the
system:

1. Executable files, distinguished by having the execute (“x”) bit set

2. Directories, noted by their directory (“d”) bit

3. Everything else

The third category can really encompass anything - regular text files, images, multimedia,
archives, etc. Files from all categories are not distinguished on the system level by their name
(this is different from other architecture, for example Microsoft(r) Windows(tm)) but there are
conventions that help users not to get lost in the listings. The most used convention is adding
a file extension - a sequence of characters prefixed with dot (“.“) to the file name. Thus most
shell scripts have filenames ending with .sh, readable text files end with .txt, JPEG images with
.jpeg, etc. This convention can sometimes fail for various reasons, most common of which is
if a file is copied from a system that doesn’t support appropriate file attributes or has filename
limitations.

To help recover file type information there’s a database of detection strings (/usr/share/misc/magic)
and a utility (file(1)) that are used together to inspect files and produce human readable descrip-
tion of its content. Because there can be infinite file types, this method cannot always work,
but will probably work for nearly 100% of commonly used files.

If you’re familiar with several widely used formats you may inspect the file yourself, for
example by converting it to a hex dump (with hexdump(1)) and looking at the first few lines.

Examples

To verify that the “magic” database is indeed what it’s supposed to be, use:

> file /usr/share/misc/magic
/usr/share/misc/magic: magic text file for file(1) cmd

To verify the format of an executable, use:

> file ‘which cat‘
/bin/cat: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD), dynamically linked (uses shared libs), stripped
> file ‘which acroread‘
/usr/X11R6/bin/acroread: a /compat/linux/bin/sh script text executable
> file /compat/linux/bin/bash
/compat/linux/bin/bash: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), for GNU/Linux 2.2.5, dynamically linked (uses shared libs), stripped

155

CHAPTER 7. BASIC UNIX SKILLS

To inspect the format of a random file:

> file a_file_i_found
a_file_i_found: JPEG image data, JFIF standard 1.02

To see for yourself what does the header of a file look like, use hexdump -C piped to head:

> hexdump -C zlib1.dll | head
00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 |MZ..............|
00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |........@.......|
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 f8 00 00 00 |................|
00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |........!..L.!Th|
00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is program canno|
00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be run in DOS |
00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |mode....$.......|
00000080 bb 22 a6 bc ff 43 c8 ef ff 43 c8 ef ff 43 c8 ef |.”...C...C...C..|
00000090 7c 4b 95 ef fd 43 c8 ef ff 43 c9 ef e7 43 c8 ef ||K...C...C...C..|

Practice Exercises

1. Find out the file type of your kernel (in FreeBSD, it’s /boot/kernel/kernel)

2. Find a unicode (UTF-16) text file and use hexdump to examine it. Compare the results
with an ASCII text file.

More information

file(1), magic(5)

7.5 Locate files and binaries on a system

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be able to quickly find the location of any file on the system as needed and know which
utilities can be used to find binaries, source, manpages and files. In addition, be able to update
the locate(1) database.

156

7.6. OVERCOME COMMAND LINE LENGTH LIMITATIONS

Introduction

By default, this database is built every Saturday. (See section 5.20 for details on weekly main-
tenance tasks.)

TODO: show how to manually build this database
If you want to find a file in real-time, you can use the find command. TODO: basic usage

and easy examples
More information on using find is covered in section 7.7 .

Examples

Practice Exercises

More information

whatis(1); whereis(1); which(1); locate(1); find(1); sh(1) including “type” built-in, -v and -V;
locate.updatedb(8) or locate.conf(5)

7.6 Overcome command line length limitations

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

The command line length is limited, and often a command should be applied to more arguments
than fit on a command line. Understand how to run the command multiple times with different
arguments for each call using xargs(1) or a shell “while” read loop.

Introduction

The shell has a limit for the command line length and the system has a limit on how many
bytes can be used for the arguments (and environment variables) when starting a new process.
(Some shells also have a limit on the command line length saved in its history.)

NOTES:
TODO: Just briefly mention the following, but focus on generic skills of using xargs and sh

while loop instead of adjusting the more advanced tunables.
ksh 1024 on command line
tcsh 8190 on command line
tcsh history is 4096
On DragonFly: TODO: sh has “abort” or “segmentation fault” and exits noticed with around

1920 characters – report this bug or commit fix
NCARGS on FreeBSD and DragonFly is 65536. On OpenBSD and NetBSD it is 262144
TODO: mention “getconf ARG_MAX”??

157

CHAPTER 7. BASIC UNIX SKILLS

TODO: do all BSD’s have kern.argmax?
Common error message is “Argument list too long.”
TODO: some xargs have -J option for replacements, but I probably won’t cover that here

and will use “while” instead
TODO: mention find -print0 and xargs -0
TODO: example using Bourne style shell:

find . -type f | while read line ; do
do something with ${line}
done

TODO: do real example above

Examples

The following is an example of having too many arguments:

$ ls -l /usr/ports/*/*/Makefile*
/bin/ls: Argument list too long.

A work-around for this is to use shell built-in “echo” and pipe the output to “xargs”, for
example:

$ echo /usr/ports/*/*/Makefile* | xargs ls -l

(Note that that output is not shown here, because it was over 15,000 lines.)

Practice Exercises

run a command multiple times with different arguments for each call: ls | xargs md5 (spits out
an md5 hash for each file in a dir)

More information

xargs(1), find(1)

7.7 Find a file with a given set of attributes

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

The find(1) utility is invaluable when searching for files matching a specific set of attributes. Be
comfortable in using this utility and may be asked to locate files according to last modification
time, size, type, file flags, UID or GID, permissions or by a text pattern.

158

7.8. CREATE A SIMPLE BOURNE SHELL SCRIPT

Introduction

Examples

find [-f pathname] [pathname ...] expression (expression consists of primaries and operands)
last modification time:
find / -mtime -2h
by size:
find / -size 2048c (finds files that are 2KB in size)
by type:
find / -type t (where t is b:block special, c:character special, d:directory, f:regular file,

l:symbolic link, p: FIFO, s:socket)
file flags:
find / -flags [-|+]flags, notflags
UID:
find / -perm [-|+]4000
GID:
find / -perm [-|+]2000
Permissions:
find / -perm [-|+]0777 (or similar mode)
find / -perm -644
By text pattern:
find / -regex pattern
find / -regex ./[xyz] finds ./foo/xyzzy

Practice Exercises

More information

find(1)

7.8 Create a simple Bourne shell script

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Most system administration tasks can be automated with shell scripts. Be aware of the ad-
vantages and disadvantages of using a Bourne shell script rather than a csh(1) or bash(1) shell
script. Be able to recognize a shebang, comments, positional parameters and special parame-
ters, wildcards, the proper use of quotes and backslashes and: for, while, if, case, and exec. In
addition, know how to make a script executable and how to troubleshoot a script.

159

CHAPTER 7. BASIC UNIX SKILLS

Introduction

Examples

Practice Exercises

More information

sh(1), chmod(1)

7.9 Find appropriate documentation

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

• Understand that BSD systems are well documented and there are many detailed re-
sources available to a system administrator.

• Be able to use the documentation found on the system itself as well as be aware of the
resources available on the Internet.

TODO: there is another section about this, so need to make sure they are not covering same
details. TODO: if one section should be removed, we can just merge the concept and content
together TODO: 7.10

Introduction

Some people say BSD systems “aren’t user-friendly”; others reply, “BSD is user-friendly; it’s
just picky about who its friends are .” Consider this section a lesson in making friends with
your BSD system.

From the earliest days of their existence, BSD systems have made extensive use of program
documentation through “manpages”, that is to say, the system’s built-in manual pages. While
the interface may not be familiar to people who have no background in Unix-like systems, the
“man” system is exceptional in the amount of and quality of documentation available, and ease
of access.

Some advantages of manual pages:
1. they include a brief synopis of the command syntax, flags, and options at the very top of
the manual page; 2. they are typically written by the developers or the development team
themselves, so they tend to be complete and accurate (more than some online “HOWTO’s”, for
example); 3. “manpages” are available on the system locally and from the basic terminal, and
so they aren’t subject to network interruptions or the current state of the GUI.

If you are running a GUI, then you can have your manpages put into a GUI window (try
“xman”). Also, note that it is possible to install a BSD system without manual pages; if typing

160

7.10. RECOGNIZE THE DIFFERENT SECTIONS OF THE MANUAL

“man man” at your shell prompt produces an error (or no output), consult with someone about
getting them installed.

RTFM! (Read the friendly manual)

A “manpage” exists for almost every program, device, library, system call, and configuration
file on the system. If you are aware of a program (let’s say “kill”), simply typing “man kill” at
the shell’s prompt will present you the documentation for kill(1), piped through your $PAGER
(sometimes this is more(1), but it is often less(1) — don’t get confused, because less(1) is really
more(1)).

In addition, many programs that are “contributed” software (for example, those from the
Free Software Foundation) also have “Info Pages”, which are displayed with (you guessed it)
“info foo” (where “foo” is the program name). If the software is FSF software, the “info” pages
have a slightly different format; otherwise, “info” simply displays the manual page in the same
way that man(1) does.

Manual Sections

But I Don’t Know What I Want to Read!

In the event that you can only remember a portion of the file, try using whatis(1) or apropos(1).
These programs search a database of installed documentation for the string you pass in as an
argument. Whatis returns fewer results (only exact matches), and apropos returns any manual
page references that contain the string at all (so sometimes it’s a good idea to pipe the output
of apropos(1) through your $PAGER).

The Manual is Too Cryptic!!!

The manual intends to describe every program with enough detail to describe all of the be-
haviors and options available to the user. It might be criticized because many manpages lack
examples in sufficient quantity to apply to every conceivable situation (an impossible task).
In addition, occasionally software developers will “skimp” on the manual page in favor of
documentation in other formats. If you find a manual page to be unsatisfying.

Examples

Practice Exercises

More information

apropos(1), man(1), man.conf(5), whatis(1), and info(1); share/doc/ and share/examples/; in
addition, each BSD project maintains an online handbook and several mailing lists

7.10 Recognize the different sections of the manual

Author: name ?? ??

161

CHAPTER 7. BASIC UNIX SKILLS

Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Recognize what type of information is found in each section of the manual. In addition, be
able to specify a specific section of the manual, ask to see all sections of the manual, and do a
search query within the manual.

Introduction

The BSD system provides useful and detailed documentation for most utilities, common con-
figuration files, programming functions, and various procedures. These are known as manual
(or man) pages and the manual may be read using the “man” command.

The manuals are categorized by various sections, usually by number but sometimes by letter
or a word or other description. The standard categories are:

1 General documentation covering standard tools and utilities

2 Programmer manual pages covering system calls and definitions

3 Programmer documentation covering library functions (and subroutines)

4 Documentation covering special files, hardware devices, kernel interfaces and
drivers

5 Documentation covering various binary and configuration file formats

6 Documentation for games and amusement

7 Miscellaneous documentation covering concepts and procedures not categorized
in other sections.

TODO: mention “macros” and “conventions” for 7?

8 Documentation for system maintenance tools, utilities and procedures

9 Programmer documentation covering kernel interfaces and driver development

TODO: section “n” for “new commands”??
TODO: maybe give a few examples
TODO: Search order
TODO: other sections
TODO: brief intro to nroff
TODO: brief intro to cat pages (preformatted man pages)
TODO: how to see all sections?
TODO: mention man pages in other locations like from installed packages or third-party

software
specify a specific section of the manual:

man section_number name
man 1 man
man 5 rc.conf

162

7.11. VERIFY A FILE’S MESSAGE DIGEST FINGERPRINT (CHECKSUM)

see all entries for name in the manual:

man -a name
man -a info

see all sections of the manual:
“man -a name TODO: check this
do a search query within the manual:
“man -k name “man -k info

Examples

Practice Exercises

TODO: show difference between “ed” and “ed” as an example

More information

man (1), intro(1) to intro(9), “/”
TODO: why “/” in this more information?

7.11 Verify a file’s message digest fingerprint (checksum)

Author: Alex Nikiforov nikiforov.al@gmail.com FreeBSD
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Be familiar with the theory behind a message digest fingerprint and why it is important to
verify a file’s fingerprint. In addition, be able to create a fingerprint as well as verify an existing
fingerprint.

Introduction

When you download some file from a server and you don’t trust this server how can you verify
that file is real, without any bogus parts? You can use fingerprint of this file for verify it.

Examples

You download file from some mirror in your country and want to verify it. Let’s do it.

> md5 file
MD5 (file) = d3762ac7a4e45f8262aeb3362bb1f9b7
> sha1 file
SHA1 (file) = 67d59b7fe01074dba2462e13633bd163453bff47

163

CHAPTER 7. BASIC UNIX SKILLS

Now we have fingerprint for file and can verify md5 and sha1 fingerprint from server.
TODO: show same with “openssl” and mention other digest types?
TODO: briefly mention cksum, checksums and block counts

Practice Exercises

Get few fingerprints from your system via md5 and sha1

More information

md5(1), openssl(1), sha1(1), cksum(1)

7.12 Demonstrate familiarity with the default shell

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

• Be comfortable using the sh(1), csh(1) or tcsh(1) shells.

• Be able to modify shell behavior both temporarily and permanently including:

– prevent the shell from clobbering existing files
– use history substitution, and
– set command aliases to save time at the command line.

• Know how to temporarily bypass a command alias.

Introduction

In BSD systems, the “shell” is frequently discussed, often abused, sometimes cursed, and, on
occasion, used by humans to perform work. For many users, and all system administrators, it’s
imperative to have knowledge of the “shell” as both an interactive command interpreter and a
programming language in its own right.

Usually, a “shell” acts as a “system command interpreter” - a program which accepts input
(in the form of “textual” commands and data), communicates with the machine to perform an
action or otherwise process the input, and then communicates a result to an output device (usu-
ally the terminal/screen that you are viewing). This is known as using the shell “interactively”.
You can, however, use a shell as a seperate program (e.g., call a seperate “child instance” to
perform some work); and most modern shells are also capable of performing multiple tasks
simultaneously in interactive mode (see section ?? for more details on this).

Generally the interactive shell produces a “prompt” at the bottom of your terminal for you
to enter commands, and directs its output to the terminal as well. Of course, all this is rather
customizeable (which is why this section is likely to be a rather long one).

164

7.12. DEMONSTRATE FAMILIARITY WITH THE DEFAULT SHELL

In addition, you can create “scripts” using shell commands in sequence to perform complex
sets of actions and perform logical operations. This is known as “shell scripting” (or shell
programming) and is addressed in the section 7.8 .

What Shell(s) Do I Get?

There are many, many shells available for use on computer systems; the ones that come with
a default *BSD installation are “traditional” (that is, they are the same as or a derivative of a
shell used on earlier releases). Here’s a list of relevant shells for BSD systems past (the first
two) and present (the rest):

• The “Bourne Shell”, written by Stephen Bourne of AT&T Labs for UNIX System 7
(1977).

• The “C Shell”, written by Bill Joy for 2BSD in the late 1970s. It featured several “ad-
vances” over the Bourne Shell, including job control, history substitution, and aliases.

• The “TC Shell” (“Tenex C Shell”) originally by Ken Greer, an improved “C Shell”.
FreeBSD has “done away” with the “C Shell” in favor of tcsh, (e.g. /bin/csh ==
/bin/tcsh), and “tcsh” is the default shell for “normal” FreeBSD users.

• The “Korn Shell”, originally by AT&T Labs staff; a “compatible upgrade” of the Bourne
Shell - a derivative, the “Public Domain Korn Shell” (pdksh) is used as both a normal
user and root’s shell in OpenBSD. (In fact, /bin/sh on OpenBSD is really pdksh).

• The “Almquist Shell”, or “ash”, which was originally a Bourne shell replacement by
Kenneth Almquist; derivatives of “ash” are actually “sh” (root’s shell) on NetBSD and
FreeBSD.

If you are coming to BSD from a “GNU/Linux” background, you may notice the absence of
“bash”. Bash is available as a third party package, but isn’t a traditional BSD shell, so it isn’t
available in a “default” install of Free-, Net-, or OpenBSD. If you *must have bash, see ??

History Substitution

A powerful feature of modern shells!

NOCLOBBER: keeping data safe

Using output redirection at the shell prompt you can redirect standard output to a file; for ex-
ample, “echo $SHELL > myfile”. You can also append data to the end of a file: “echo ’foo bar’
>> myfile”. But this can be dangerous; what if “mysh” already exists in the current directory
and contains valuable data? And what if you meant to append (“>>”), but accidentally only
put in one “>”? Bye-bye “myfile”!

Fortunately in modern shells you can (and perhaps should) set “noclobber”:

$ cat foo
testing 1 2 3

$ set noclobber

165

CHAPTER 7. BASIC UNIX SKILLS

$ echo “4 5 6” > foo
foo: File exists.

With “noclobber” set, files are protected from accidental replacement by the shell; you can
use “>|” when you’re sure you meant to overwrite the file!

Command aliases

At times it would be handy to have a short key combination for a long command, wouldn’t
it? That’s where aliasing comes in handy. Aliases are set in shell resource files or at the
prompt itself. In some BSD’s, a number of “prebuilt” aliases are already present, particularly
in “.cshrc” for the C shell (for example, “ll” is aliased to “ls -l” in FreeBSD’s .cshrc).

Aliases are assigned using the keyword “alias”; if using sh or its variants, an equals sign
(“=”), and then an alias string. Currently assigned aliases are viewed by typing “alias” alone;
an alias can be removed with “unalias aliasname “.

See the Examples section for more details.

Bypassing a Command Alias

An alias may be “bypassed” on the command-line by preceding it with a “backslash” (). This
is useful if you happen to have an alias with the same name as an actual program on the system.
See the Examples for more details.

Selecting the user’s default login shell is covered in section ?? .
TODO: NOTES: OpenBSD, root, sh (which is really “ksh” which is really “pdksh”); sh,

ksh, and csh on OpenBSD are all statically linked and therfore available in singleuser mode;
FreeBSD, root, sh; users, tcsh which is tcsh and csh is also tcsh; NetBSD has old BSD sh, it’s
own “sh” (which others have forked to “ash”) and pdksh.

Notes

! reverses the exit status of a pipeline (so it’s the logical NOT of the result). If the result is 1
then it becomes 0, if the result is 0 it becomes 1.

also a shell pattern tool. *History substitutions begin with the character “!”
!! the previous event (equivalent to -1)
$ - the last argument
0 the first (command) word
h remove a trailing pathname component, leaving the head
t remove all leading pathname components, leaving the tail
r remove a filename extension “.xxx”, leaving the root name
p named pipe (fifo)
[X] \ - temporarily bypass an alias \rm
escape a character, continue a command onto another line
modify shell behavior: temporarily permanently
prevent the shell from clobbering existing files:

sh -C
sh -o noclobber (prevents command > file1 from overwriting file1 if it already exists)
command >| file1 overrides the noclobber designation

166

7.13. USE JOB CONTROL

use history substitution:
scroll the up key or down key to find appropriate command line
set command aliases to save time:

alias name=[=string ...]

temporarily bypass a command alias:

builtin cmd [arg ...]

executes the specified built-in command, cmd. This is useful when the user wishes to over-
ride a shell function with the same name as a built-in command.

Examples

Practice Exercises

More information

sh(1), csh(1), and tcsh(1) including: !, !!, \$, 0, h, t, r, p, \

7.13 Use job control

Author: ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Know how to start a process in the background, place an existing process into the background,
and return a background process to the foreground.

Be able to verify if any jobs are currently in the background and be aware of the difference
between kill(1) and the shell built-in “kill”.

Introduction

Some jobs run by the shell are “small jobs” — quick and easy for the machine, with virtually
no waiting for the user. Consider these small files and the use of grep(1):

$ ls -l
-rw-r-r- 1 myuser wheel 315 Jan 19 13:00 notes.txt
-rw-r-r- 1 myuser wheel 1967 Jan 18 13:49 otherstuff
-rw-r-r- 1 myuser wheel 6335 Jan 11 23:11 packagelist
-rw-r-r- 1 myuser wheel 14764 Jan 23 13:45 spammers
-rw-r-r- 1 myuser wheel 2678 Jan 23 13:46 spamstuff.txt
$ grep speakeasy *
spammers:.dsl.speakeasy.net

167

CHAPTER 7. BASIC UNIX SKILLS

The job is finished almost instantly, and your shell returns control to you. On the other
hand, consider this:

tar -c -z -f /backup/src.tar /usr/src/*

Depending on your system, it could take a very long time for you to make a gzipped archive
of your BSD’s project source tree! So, you can wait and twiddle your thumbs, or you can use
job control to have the shell “put the job in the background” and return to your prompt so you
can keep working.

Job Control

All modern shells feature job control. In the BSD’s, the standard user’s shell is csh/tcsh, but
the information presented here should apply equally well to other shells, except as noted. The
manpage for tcsh(1) has an entire section on job control, which should be read as an additional
resource to clarify and extend this section.

With a job-control shell, you can start a job so that it runs in the background, see information
about currently running “backgrounded” jobs, move jobs from the foreground to background
or vice-versa, or terminate them abruptly.

“Backgrounding” and “Foregrounding” jobs

The shell keeps a list of (backgrounded) jobs, including their status, which can be queried with
the “jobs” shell built-in. If/when the job exits, the shell will report this, along with the job’s
exit status, prior to the next shell prompt.

Listing the process IDs (PID) with the jobs can be done with “jobs -l“. (TODO: check shells)
To start a job in the background, end the command line with “&”. To see running jobs, type

“jobs”. You can then use the job numbers in conjunction with “bg %” or “fg %” to move jobs
from foreground to background and vice-versa.

If you start a long job in the foreground and then realize you forgot the “&”, you can suspend
the job with CTL-Z, then issue “bg” to the shell and the job will continue in the background.

See the Examples section for details.

A word about “kill”

A job control shell usually has a built-in ’kill’ command; a problem can ensue when this ’kill’
is confused with kill(1).

For example, in the tcsh shell you should use a “%” sign to indicate a job number to the shell;
otherwise it may be confused with a process ID in the system. While “kill %1” would simply
terminate the first backgrounded job, “kill 1” would send a TERM signal to the process with
PID 1 (usually /sbin/init!), and would probably have the same effect as calling shutdown(8).
As a “normal” user, this would probably not be an issue, but if you were to do this as root, you
might cause some problems. (Chalk this up as yet another reason not to do normal work as
“root”).

Most other shells also have a “kill” built-in. If you use another shell, try “type kill” at the
prompt. If the shell doesn’t answer “/bin/kill”, then it will probably say something similar to
“kill is a shell built-in”. If your shell has a built-in kill, check your shell’s manpage for details
on using “kill” under your shell.

168

7.13. USE JOB CONTROL

Redirecting job output

If you intend to use job control it is useful to know about output redirection, because, under
most circumstances, jobs that produce output will continue to do so, potentially “cluttering up”
your terminal and whatever your “next project” is. See ?? for details.

Examples

$ sh /scripts/mylongscript.sh &
sh /home/myuser/scripts/mylongscript.sh &
[1] 10394

Execute “mylongscript.sh” in the background. The shell reports the command, the job
number, and the job’s PID on the system.

$ tar -c -f /backup/src.tar /usr/src/*
tar: Removing leading ’/’ from member names

Oops! There’s that long job again, and we forgot to background it. While “stuck” waiting,
press CTL-Z:

ˆZ
Suspended

Now you have your prompt back, so issue “bg”:

$ bg
[2] tar -c -f /backup/src.tar /usr/src/COPYRIGHT /usr/src/LOCKS ... &

Now run “jobs” and you should see both “backgrounded” tasks in the list:

$ jobs
[1] + Running sh /home/myuser/scripts/mylongscript.sh &
[2] - Running tar -c -f /backup/src.tar /usr/src/COPYRIGHT /usr/src/LOCKS ... &

But wait! Suppose a colleague is already making an archive of the source tree, so we don’t
need to.

$ fg 2
tar -c -f /backup/src.tar /usr/src/COPYRIGHT /usr/src/LOCKS ... &
ˆC

A quick CTL-C, and we save lots of CPU cycles, and disk space, too. Of course, in
csh/tcsh, we could have just called “kill” and obtained the same basic result:

$ kill %2

169

CHAPTER 7. BASIC UNIX SKILLS

Practice Exercises

1. Find a “long” job that needs to be run, and do it in the background with “&”. (Optionally,
use redirection to make sure any output goes to a file or to the “bit-bucket”.)

2. Call the job to the foreground, then terminate it with CTL-C. (Do this fairly early!)

3. Start the job again in the foreground, then use CTL-Z to suspend the job. Then issue
“bg”.

4. While the job (possibly more) is running, call “jobs” and then “jobs -l” (or “jobs -ls” in
some shells). Study the differences in the output.

5. Use kill to terminate the job. Remember that in some shells, you must use “%” (“kill
%1”). In others, it may be necessary to obtain the job’s PID and use this as a flag to
kill(1).

More information

\&, CTRL-Z, jobs, bg, fg, and “kill” which are all built-in to the shell

7.14 Demonstrate proficiency with regular expressions

Author: name ?? ??
Reviewer: name ?? ??
Reviewer: name ?? ??

Concept

Regular expressions are part of the daily life of a system administrator. Be able to match
text patterns when analyzing program output or searching through files. Be able to specify a
range of characters within brackets [], specify a literal, use a repetition operator, recognize a
metacharacter and create an inverse filter.

Introduction

Examples

Practice Exercises

More information

grep(1), egrep(1), fgrep(1), re_format(7)

170

7.15. UNDERSTAND VARIOUS “DOMAIN” CONTEXTS

7.15 Understand various “domain” contexts

Author: Ivan Voras IvanVoras FreeBSD
Reviewer: Sean Swayze swayze@pcsage.biz FreeBSD/OpenBSD
Reviewer: name ?? ??

Concept

The term “domain” is used in Unix for several facilities. Understand the meaning of the term
in the context of the Network Information System (NIS), the Domain Name System (DNS),
Kerberos, and NTLM domains.

Introduction

All “domains” that we’re dealing with here are different ways of grouping certain types of
information together. In particular:

• NIS, Kerberos and NTLM domains deal with system management and security - each
of these allows managing system users and groups from a central location / repository
that’s located on dedicated servers. Machines belonging to one of these domains query
the central server for security clearance and user information.

• DNS is is a system that assignes human readable names to IP addresses. DNS names
form a hierarchy in which each system’s fully qualified domain name (FQDN) is formed
from the domain name part and a single system name part, and the domain names can be
nested.

Examples

DNS name are hierarchical and nested; thus the name:

www.servers.example.com

refers to a machine called “www” in the domain “servers.example.com” which is nested in
“example.com” which is itself nested under “.com”. The nslookup tool can be used to inspect
DNS names:

> nslookup www.google.com
Server: dns.server.local
Address: xxx.xxx.xxx.xxx
Aliases: xxx.xxx.xxx.xxx.in-addr.arpa
Non-authoritative answer:
Name: www.l.google.com
Addresses: 216.239.37.104, 216.239.37.99
Aliases: www.google.com

171

CHAPTER 7. BASIC UNIX SKILLS

Note that high traffic sites have multiple computers answering to the same DNS name, in
order to help performance (as demonstrated in the above example). DNS databases actually
contain several types of records. The most common are “A” records which are widely used to
access generic resources, but arguably equally popular are “MX” records that hold addresses
of e-mail servers for specific domains:

> nslookup
Default server: dns.server.local
...
> set type=mx
> gmail.com
Non-authoritative answer:
gmail.com preference = 50, mail exchanger = gsmtp183.google.com
gmail.com preference = 5, mail exchanger = gmail-smtp-in.l.google.com
gmail.com preference = 10, mail exchanger = alt1.gmail-smtp-in.l.google.com
gmail.com preference = 10, mail exchanger = alt2.gmail-smtp-in.l.google.com
gmail.com preference = 50, mail exchanger = gsmtp163.google.com
Authoritative answers can be found from:
gmail.com nameserver = ns2.google.com
gmail.com nameserver = ns3.google.com
gmail.com nameserver = ns4.google.com
gmail.com nameserver = ns1.google.com

A Windows NT domain (NTLM) name is formed by two backlashes followed by a
case-insensitive name containing no spaces, for example:

\\MYCORP

Computers and users on the NTLM domain can be referenced either by appending a
backslash and the username to the domain name or by using the (misused in this case)
standard unix notation user@domain:

\\MYCORP\joe
joe@mycorp

Practice Exercises

1. Try several lookups of www.google.com with nslookup and compare results

2. See how many mail servers yahoo.com has

More information

domainname(1), resolv.conf(5), krb5.conf(5), smb.conf(5)

7.16 Configure an action to be scheduled by cron(8)

Author: name ?? ??

172

7.16. CONFIGURE AN ACTION TO BE SCHEDULED BY CRON(8)

Reviewer: Sean Swayze swayze@pcsage.biz FreeBSD/OpenBSD
Reviewer: name ?? ??

Concept

Understand the difference between the system crontab and user crontabs. In addition, be fa-
miliar with using the crontab editor, be able to recognize the time fields seen in a crontab, and
understand the importance of testing scripts before scheduling their execution through cron(8).
Recognize that the files /var/cron/allow and /var/cron/deny can be created to control which
users can create their own crontabs.

Introduction

The cron daemon starts at boot time and is always running. Every minute it checks for updated
configurations – called a crontab – and runs the jobs that match the specified time.

Two examples of scheduled jobs are log rotations and periodic tasks, introduced in section
5.10 and section 5.20 .

The system-wide cron table is commonly located at /etc/crontab. And user crontabs are
stored under /var/cron/tabs directory.

Note that NetBSD and OpenBSD keep their default system crontab in the /var/cron/tabs/root
file.

A single crontab configuration is generally placed on one text line. Space or tab delimited,
it defines the minute, hour, day of month, the month, the day of week and the shell command
to execute. A pound sign (#) at the beginning of a line starts a comment. A comment can not
be on the same line as a crontab.

An asterisk (*) matches all ranges (first to last) for a time specification.
The /etc/crontab format also includes the name of the user to run the command as. The

per-user crontabs do not have the user field.
TODO: show a few examples from default cron and show some more examples and explain

#minute hour mday month wday who command
rotate log files every hour, if necessary
0 * * * * root newsyslog
run weekly maintenance script every Saturday morning and save and email output
30 3 * * 6 root mask 077; /bin/sh /etc/weekly 2>&1 | tee /var/log/weekly.out | mail -s “/bin/hostname weekly output” root

Note if this file was in the per-user crontabs, it would not have the “who” (root) field.
Note: if both the day of month field and the day of week fields are defined, then the job will

run on both of these scheduled times. TODO: for example ...
A crontab can also define shell environment variables, for example TODO

Using crontab(1) to edit user cron table

TODO: note about setuid or setgid, note that OpenBSD does it different? Maybe this doesn’t
matter for this book

173

CHAPTER 7. BASIC UNIX SKILLS

Examples

Practice Exercises

More information

crontab(1), cron(8), crontab(5)

174

Index

/var/cron/allow, 173
/var/cron/deny, 173

accounting, 83
alias, command, 164
alias, interface, 144
ARP, 140
audit-packages, 13
autoconfiguration, IPv6, 139

background, 167
bash, 147
Bourne shell, 159

case, 159
chmod, 57
compression, 102
CPU, 86
crontab, 173
csh, 147
cwd, 56

DHCP, 143
dig, 133
DNS, 171
documentation, 160
domain, 171

editing, 149
ELF, 155
environment variables, 147
ex, 149
exec, 159
expressions, 170

file ownership
su, 57

file types, 155
filesystem hierarchy, 62

find, 158
fingerprint, 163
flavors, 6
for, 159
foreground, 167

gstat, 116

hier, 62
hierarchy, 62
history, 164

if, 159
ifconfig, 144
installation, 2
iostat, 115
IPv6, 139, 140

jobs, 167

Kerberos, 171
kill, 87
killall, 89
knobs, 10

lease, DHCP, 143
locate, 156
logging, 101

MAC, 139
magic, 155
mailbox, 106
maildir, 102
make, 10
man pages, 162
manual, 162
mbox, 102
media, 6
message digest, 163

175

Index

metacharacter, 170
mk.conf, 10
MTA, 102
MUA, 106

neighbor discovery cache, 140
networking, 140
nfsstat, 116
nice, 87
nice-level, 87
NIS, 171
nslookup, 171
NTLM, 171

package, 12
packages, 8, 11
performance, 115
pgrep, 89
PID, 87
pipe, 146
pkgsrc, 8, 11
pkill, 89
port, TCP or UDP, 140
portaudit, 13
ports, 8, 11
ports, FreeBSD, 10
printcap, 107
printing

printcap, 107
processes, 167
ps, 86

regular expressions, 170
release-map, 6
RELENG, 6
renice, 87

scripts, 159
securelevel, 20
security levels, 20
sh, 147
shebang, 159
shell, 147
SIGKILL, 87, 89
signals, 89
SIGTERM, 87, 89
standard error, 146

standard input, 146
standard output, 146
subshells, 147
sysinst, 6
sysinstall, 6
systat, 87, 116
system accounting, 83

TCP, 140
tcsh, 147
terminal, 83
thrashing, 66
time, network, 141
top, 86
tty, 83

UDP, 140
unionfs, 64
upgrade, 6

variables, 147
vi, 149

a, 150
clones, 154
command-line options, 149
editing commands, 151
exit commands, 150
i, 150
movement commands, 150
showmode, 150
ZZ, 150

virtual hosting, 144
vmstat, 115
vuxml, 13

while, 157, 159
whois, 133
www.bsdinstaller.org, 6

xargs, 157

176

